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Geographical predisposition influences on
the distribution and tissue characterisation
of eccentric coronary plaques in non-
branching coronary arteries: cross-sectional
study of coronary plaques analysed by
intravascular ultrasound
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Abstract

Background: We investigated the influence of geographical predisposition on the spatial distribution and composition
of coronary plaques.

Methods: Thirty coronary arteries were evaluated. A total of 1441 cross-sections were collected from
intravascular ultrasound (IVUS) and radio-frequency signal-based virtual histology (VH-IVUS) imaging. To exclude complex
geographical effects of side branches and to localise the plaque distribution, we analysed only eccentric plaques
in non-branching regions. The spatial distribution of eccentric plaques in the coronary artery was classified into
myocardial, lateral, and epicardial regions. The composition of eccentric plaques was analysed using VH-IVUS.

Results: The plaque was concentric in 723 sections (50.2%) and eccentric in 718 (49.9%). Eccentric plaques were
more frequently distributed towards the myocardial side than towards the epicardial side (46.7 ± 7.5% vs. 12.5 ± 4.
2%, p = 0.003). No significant difference was observed between the myocardial and lateral sides (46.7 ± 7.5% vs. 20.8 ± 5.
0%) or between the lateral and epicardial sides. Eccentric thin-capped fibroatheromas were more frequently distributed
towards the myocardial side than towards the lateral side (p = 0.024) or epicardial side (p = 0.005).

Conclusion: Geographical predisposition is associated with distribution, tissue characterisation, and vulnerability
of plaques in non-branching coronary arteries.
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Background
The central mechanism of atherosclerosis is chronic
inflammation in the presence of damaged vascular
endothelium and lipid-laden foamy macrophages derived
from infiltration of monocytes into the arterial wall. This
mechanism can lead to coronary stenosis and thrombotic
obstruction after disruption of the resulting

atherosclerotic plaque [1]. Accumulation of leukocytes
and lipids, and proliferation of smooth muscle cells, cell
death, and fibrosis occur on the damaged endothelium [2].
Although the arterial wall is exposed to risk factors, such
as systemic hypertension, hypercholesterolaemia, and dia-
betes, atherosclerotic plaques develop preferentially at
specific areas [3]. In patients with acute coronary syn-
drome (ACS), the distribution of ruptured coronary artery
plaques in the lumen is significantly more eccentric than
that of non-ruptured plaques. This finding suggests that
blood flow influences the location of ruptured plaques
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and may even contribute to plaque rupture [4]. The re-
lationship between the spatial distribution and the
phenotype of plaques under conditions where blood
flow influences atherosclerosis in stable patients has
not been fully elucidated. In this study, we used grey-
scale intravascular ultrasound (IVUS) to identify spatial
plaque distribution, and virtual histology (VH)-IVUS to
evaluate the plaque phenotype in 30 consecutive patients
who underwent elective percutaneous coronary interven-
tion (PCI), in an attempt to clarify the association between
geographical predisposition and plaque phenotype.

Methods
Study population
This cross-sectional observational study was carried out
in a single centre. We studied 30 consecutive patients
who underwent elective PCI under the diagnosis of
stable effort angina pectoris and from whom satisfactory
grey-scale and VH-IVUS images were obtained. This study
was approved by the Nippon Medical School institutional
review board, and informed consent was obtained from all
patients.

IVUS image acquisition and analysis
According to our standard protocol and previous report
[5], all patients without contraindications were adminis-
tered aspirin (100 mg/day) and ticlopidine (100 mg B.I.D.)
for at least 7 days before the procedure. Per the protocol,
clopidogrel (75 mg/day) was also administered in some
cases, for at least 4 days before the procedure. At the start
of the procedure, weight-adjusted intravenous heparin was
given with a target activated clotting time of >250 s. All
patients underwent IVUS imaging before any catheter-
based intervention, and none of the patients had undergone
prior intracoronary intervention in the target vessel. All the
lesions were located in native coronary arteries, not in
grafted vessels. Intracoronary nitroglycerin (100–200 mg)
was administered during all IVUS studies before imaging.
Grey-scale and VH-IVUS images were acquired using

a phased array 20 MHz, 3.2 Fr IVUS catheter (EagleEye;
Volcano Corporation, Rancho Cordova, CA, USA) with
an automated pullback of 0.5 mm/s. The IVUS catheter
was tracked over a 0.014-inch guide wire up to a position
distal to the diseased segment. The VH-IVUS data were
recorded onto the imaging system’s hard disk, and ana-
lyses were performed independently by experienced
analysts. The analysts were unaware of the angiographic
findings and the patients’ baseline clinical and lesion char-
acteristics. All measurements were derived automatically
using Volcano imaging system pcVH 2.1 software. The VH-
IVUS data analysis was based on grey-scale border contour
calculation, and the tissue maps were provided by the
software (green = fibrous, yellow = fibro-fatty, red = necrotic
core, and white = dense calcium). All cross-sections located

near a side branch (within twice the vessel diameter) were
excluded from analysis to minimise confounding by flow
turbulence. The plaque eccentricity index was the ratio of
maximum to minimum plaque thicknesses calculated as
previously suggested [6]. An eccentric lesion was defined by
an eccentricity index of ≥3, or by the presence of an arc of
disease-free arterial wall within the lesion. A three-layered
appearance with an intimal thickening of <0.2 mm was
considered the upper limit of a ‘normal’ arterial wall
[7]. Cross-sections with excessive calcification (calcium
arc ≥90°) were excluded from the analysis because of
acoustic shadowing of deeper structures, precluding
accurate analysis of the vessel area. Lesions with <90°
of calcium arc were analysed by extrapolation, assum-
ing that the vessel circumference was circular, and by
axial movement of the transducer to identify the vessel
area of adjacent non-calcified segments, as described
previously [8].
Perivascular IVUS landmarks—coronary veins, pericar-

dium, myocardium, and side branches—were used for ves-
sel orientation, as previously described [9]. Based on these
landmarks, the vessel was divided into myocardial (inner
curve of the vessel), epicardial (outer curve of the vessel),
and two lateral (intermediate) quadrants. All cross-sections
with eccentric plaque distribution were classified according
to whether their plaque orientation was centred on the
pericardial, myocardial, or either lateral side of the vessel
(Fig. 1). In cases where the plaque angle exceeded 90° or
the plaque was distributed in between two quadrants, the
quadrant with the greater plaque thickness was selected for
grouping.
VH-thin-cap fibroatheroma (VH-TCFA) was defined

according to a previous study, in which VH-TCFA was a
plaque burden (plaque area/external elastic membrane
area) exceeding 40% over three consecutive frames, with
a confluent necrotic core whose arc was in contact with
the lumen for 36° along the lumen circumference [10].
We counted the cross-sections of VH-TCFA morphology
and expressed the total as a percentage of all distributed
eccentric plaques in each individual patient.
All IVUS images were analysed by two experienced

investigators who were blinded to the angiographic data
and clinical presentations. When discordance occurred
between the observers, a consensus reading was obtained
from another investigator.

Statistical analysis
All data were analysed using SPSS version 21.0 (IBM,
Corp, Armonk, NY). All data were analysed by the
Shapiro-Wilk test for distribution of normality, and the
test showed that the data were not distributed normally.
The data were analysed by a non-parametric statistical
method, the Kruskal-Wallis test. The post-hoc multiple
comparison was performed automatically in SPSS. Data
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are presented as mean ± SEM. Statistical significance was
considered as p < 0.05.

Results
The baseline characteristics of the patient population are
presented in Table 1. Of the 30 vessels subjected to IVUS
morphometric analysis, 11 were left anterior descending,
8 were left circumflex, and 11 were right coronary arteries.
A total of 1441 cross-sections were analysed, comprising
497 (34.5%) in the left anterior descending artery, 325
(22.6%) in the left circumflex artery, and 619 (43.0%) in
the right coronary artery.

Orientation of distributed atherosclerotic plaque
The results of the grey-scale IVUS data are summarised
in Table 2. Plaque distribution was found to be concentric
in 723 (50.2%) and eccentric in 718 (49.8%) cross-sections.
Imaging of landmarks, such as the pericardium, one or
more accompanying veins, and side branches, allowed for
spatial orientation [9]. Of the 718 eccentric plaques, 401
cross-sections were oriented towards the myocardial side,
compared with only 80 that were oriented towards the
epicardial side, and 237 that were oriented towards the
two lateral quadrants. With regard to the plaque distri-
bution in each individual patient, plaque was more fre-
quently oriented towards the myocardial side (50.2 ±

7.0%) than towards the epicardial (25.6 ± 5.4%) or lateral
(14.2 ± 4.4%) side (Fig. 2). Eccentric plaques were more
frequently distributed towards the myocardial than to-
wards the epicardial side (p = 0.003). The minimum vessel
diameter was significantly smaller at sites where lateral

Fig. 1 Intravascular ultrasound (IVUS) images of plaque. a Landmarks for IVUS orientation. The pericardium appears as a bright and relatively thick
structure with varying degrees of spokelike reverberations created by the interwoven fibrous strands. The cardiac vein was observed on the left
side of left anterior descending artery. b Orientation of plaque distribution was determined by IVUS landmarks. The eccentricity index of the plaque
was 3, and it was classified as myocardial plaque. c The virtual histology (VH) analysis of plaque composition was divided into four elements (fibrous
area, fibro-fatty area, necrotic core, and calcified area). d This cross-section was excluded from analysis because of diagonal branching

Table 1 Baseline clinical characteristics of patients

Total patients n = 30 Number Percent

Male 23 76.7

Age, mean ± SEM, years 68.8 ± 6.4

Effort angina pectoris 26 86.7

Unstable angina 1 3.3

Silent myocardial ischaemia 1 3.3

Old myocardial infarction 1 3.3

Ischaemic cardiac myopathy 1 3.3

Risk factors

Hypertension 26 86.7

Diabetes mellitus 14 46.7

Hyperlipidaemia 20 66.7

Current smoker 17 56.7

Family history 8 26.7

Obesity 10 33.3

Hyperglycaemia 1 3.3

Komiyama et al. Cardiovascular Ultrasound  (2016) 14:47 Page 3 of 7



side plaque was observed, compared with sites with epi-
cardial side plaque. The maximum vessel diameter was
significantly smaller at sites with lateral side plaque than
at sites with myocardial side plaque. The plaque area of
lateral side plaques was significantly smaller than that of
myocardial or epicardial plaques.

Composition of eccentric plaques analysed by VH
We analysed the composition of eccentric plaque by
using VH-IVUS and classified it into four categories:
Fibrous, fibro-fatty, necrotic core, and calcification.
The results are summarised in Table 3. The plaque
area of lateral side plaques was significantly smaller
than that of myocardial or epicardial plaques. Lateral
and epicardial plaques contained significantly more

fibrous plaque component than myocardial plaques.
Myocardial side plaques contained less fibrous compo-
nent than lateral and epicardial side plaques, whereas
myocardial side plaques contained more fibro-fatty
area than lateral plaques. Myocardial and lateral side
plaques contained more necrotic core component than
the epicardial side plaques, and epicardial plaques
contained more calcium than lateral plaques.

Distribution of VH-IVUS-defined TCFAs
We observed TCFAs significantly more frequently in
myocardial side plaques (4.99 ± 1.61%) than in lateral
side plaques (0.80 ± 0.77%, p = 0.024) or in epicardial
side plaques (0%, p = 0.005) (Fig. 3).

Table 2 Grey-scale IVUS data

Myocardial side Lateral side Epicardial side

Number of cross-sections (number) 401 237 80

Minimum lumen diameter (mm) 2.55 ± 0.03 2.51 ± 0.05 2.59 ± 0.07

Minimum vessel diameter (mm) 4.17 ± 0.04 3.92 ± 0.05* 4.26 ± 0.07*

Maximum lumen diameter (mm) 3.14 ± 0.04* 2.98 ± 0.06* 3.13 ± 0.08

Maximum vessel diameter (mm) 4.66 ± 0.04 4.38 ± 0.06 4.70 ± 0.07

Average lumen diameter (mm) 2.84 ± 0.03 2.73 ± 0.05 2.84 ± 0.07

Average vessel diameter (mm) 4.43 ± 0.04 4.15 ± 0.05 4.48 ± 0.07

Lumen area (mm2) 6.72 ± 0.16 6.42 ± 0.25 6.71 ± 0.38

(*p < 0.05)

Fig. 2 Plaque distribution (%) of the intravascular ultrasound (IVUS) cross-sections in the four quadrants. Of the total plaques, 46.7 ± 7.5% were
distributed towards the myocardial side, 20.8 ± 5.0% towards the lateral side, and 12.5 ± 4.2% towards the epicardial side. Data are shown as
mean ± SEM. N.S., not significant
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Discussion
The major findings of this study are as follows. (1) Eccentric
plaques were more frequently distributed towards the myo-
cardial side than towards the lateral and epicardial sides of
the coronary artery. (2) A significant difference was ob-
served in the diameters of the eccentric plaque vessels
between the distributed sides. (3) The difference in the
plaque component between the distributed sides was
also significant. TCFAs were more frequently observed
in myocardial side plaques than in lateral or epicardial
side plaques.
Coronary arteries are continually subjected to mechanical

force, such as tensile or compressive stress and shear stress
generated by the heartbeat and pulsatile blood flow during
each cardiac cycle [11, 12]. Among the biomechanical
forces, flow generates tangential drag force and resultant
shear stress. The magnitude of shear stress is determined

by changes in luminal geometry, blood flow velocity, and
plasma viscosity [13]. Blood flow is disturbed by vessel
curvature; it is fast in the outer curvature and slow in the
inner curvature. Shear stress is high in the outer curvature
and low in the inner curvature [13–15]. Endothelial cells
sense shear stress and alter their shape and phenotype [16].
The shear stress is controlled by adapting vessel size to suit
the blood flow in response to sustained changes [17]. Hypo-
thetically, if coronary arteries were classified geometrically,
myocardial, epicardial, and lateral sides would be ex-
posed to low, high, and intermediate shear stress, re-
spectively. Although shear stress may change over time
as plaque progression into the lumen changes coronary
flow, we found that eccentric plaques were more fre-
quently distributed towards the myocardial side than
towards the epicardial side or lateral side, which is con-
sistent with the hypothesis mentioned above.
Vascular adaptation by shear stress allows the arterial

tree to deviate from a straight-tube geometry to another
morphology. This phenomenon permits the shear stress
to remain unchanged, which provides the predilection
site for eccentric plaque development [18]. Human autopsy
data showed compensatory enlargement of human coron-
ary arteries in relation to plaque area, and lumen stenosis
was delayed until the lesion occupied 40% of the internal
elastic lamina, which is termed Glagov’s phenomenon [19].
In the present study, the plaque area in the myocardial
and epicardial sides was significantly larger than that in

Table 3 VH-IVUS data

Myocardial side Lateral side Epicardial side

Plaque area (mm2) 6.10 ± 0.22* 4.78 ± 0.17*† 6.31 ± 0.33†

Plaque area (%) 44.93 ± 1.08 43.72 ± 1.18 47.66 ± 2.06

Fibrous area (%) 55.08 ± 0.76*† 60.93 ± 0.94† 60.48 ± 1.71*

Fibro-fatty area (%) 14.25 ± 0.51† 9.83 ± 0.41† 11.22 ± 0.69

Necrotic core area (%) 18.26 ± 0.45† 18.02 ± 0.61* 15.33 ± 0.97*†

Calcified area (%) 11.91 ± 0.72 9.96 ± 0.65* 12.98 ± 1.23*

(*p < 0.05, †p < 0.01)

Fig. 3 Distribution of thin-capped fibroatheromas (TCFAs). Of the total TCFAs, 4.19 ± 1.49% were distributed towards the myocardial side, 0.80 ± 0.77%
towards the lateral side, and none towards the epicardial side. Data are shown as mean ± SEM. N.S., not significant
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the lateral side, although no significant difference was
found in the lumen area between the distributed sides;
this finding indicates compensatory enlargement of the
myocardial and epicardial vessels. We also confirmed
that the minimum vessel diameter was significantly larger
on the epicardial side than on the lateral side, and that the
maximum lumen diameter was significantly larger on the
myocardial side than on the lateral side. Although the dif-
ference was not statistically significant, the average vessel
diameter was numerically larger on the myocardial side
than on the lateral side (4.43 ± 0.04 mm vs. 4.15 ± 0.05 mm,
p = 0.108), and numerically larger on the epicardial side
than on the lateral side (4.48 ± 0.07 mm vs. 4.15 ± 0.05 mm,
p = 0.0814). The average plaque area was approximately
40% (44.83 ± 0.75%), and the compensatory vascular re-
modelling was associated with geographical predisposition.
Using VH-IVUS imaging, a spatial relationship between

low shear stress and the necrotic core was observed in early
plaques (plaque burden <40%) [20], while increases in the
necrotic core percentage occurring at the site were typically
affected by low shear stress [21]. In serial observations of
endothelial shear stress and plaque composition, low-stress
segments had greater plaque and necrotic core progression
compared with intermediate-stress coronary segments, and
high-stress segments had greater necrotic core and calcium
progression [22]. In the present study, analysis of plaque
composition by VH-IVUS revealed that lateral and epicar-
dial plaques contained significantly more fibrous plaque
component than myocardial plaques. Myocardial side pla-
ques contained less fibrous component than the lateral and
epicardial side plaques, whereas myocardial side plaques
contained more fibro-fatty area than lateral plaques.
Myocardial and lateral side plaques contained more
necrotic core component than the epicardial side plaques,
and epicardial plaques contained more calcium than the
lateral plaque. The actual proportion of each plaque com-
ponent correlated well with assumed shear stress being
high on the epicardial side, intermediate on the lateral
side, and low on myocardial side (Table 3).
In a previous study using integrated backscatter IVUS

[23], Sato et al. reported that in plaques with moderate
stenosis in non-branching lesions, lipid pools clustered in
the inner curvature and fibrous tissue clustered in the outer
curvature. In accordance with their findings, we also found
that fibro-fatty and necrotic contents identified by VH-
IVUS were more often seen in myocardial side plaque.
Although they studied both eccentric and concentric pla-
ques, whereas we selected only the eccentric plaques for
analysis, different imaging modalities specifically useful for
plaque content characterisation confirmed similar results.
Longitudinal studies in porcine models have shown that

TCFAs, which develop more frequently in the coronary
regions, are exposed to low shear stress throughout their
evolution [24, 25]. Autopsy studies have shown that

atherosclerotic lesions are provoked by TCFA rupture,
which can lead to thrombosis, ACS, and sudden cardiac
death [26, 27]. In vitro studies using the finite element
method have demonstrated that the shear stress of the
vascular lumen is an important determinant of coronary
plaque vulnerability and plaque rupture [28, 29]. Fukumoto
et al. demonstrated that localised elevation of blood pres-
sure and shear stress are associated with coronary plaque
rupture in the proximal or top portion of the plaque in
ACS patients [30]. The shear stress concentration is fre-
quently correlated with the plaque rupture site. Plaque rup-
ture may heal without any symptoms or lead to mural
thrombosis with subsequent asymptomatic healing [31, 32].
Although the precise mechanisms that promote the

focal formation of rupture-prone coronary plaques in vivo
remain to be elucidated, we found that eccentric TCFAs
were clustered towards the myocardial side. We only
analysed eccentric plaques, which may be predisposing
to future coronary events [4]. The relationship between
rupture-prone TCFAs and subsequent thrombus forma-
tion or clinical events is still unknown [31], as is whether
TCFA-induced plaque ruptures lead to lumen stenosis.
Although it is also still unclear whether TCFA clusters
towards the myocardial side actually rupture and lead
to clinical symptoms or lumen stenosis, the method for
the geographical classification of coronary plaques by
using IVUS in this study is simple and applicable in
clinical settings, and can be utilized to characterise the
complex profile of atherosclerotic plaque.

Study limitations
The limitations of this study are as follows. First, the sam-
ple size was small; only 30 coronary arteries in 30 patients
were analysed. Second, all the patients were in stable con-
dition, and their plaque phenotype may have been differ-
ent from that of unstable patients. Third, we included
right arteries, in which atherosclerotic change may differ
from that in left coronary arteries [33]. Fourth, we did not
calculate the absolute value of inter-observer variability in
identifying the distribution of plaque, although this does
not invalidate the findings because discordance in the
image reading was rare. Fifth, this study was designed as
an observational study, and the clinical importance of geo-
graphical predisposition should be assessed prospectively.

Conclusions
Eccentric coronary plaques are more often observed on
the inner side of the coronary arteries. The geographical
predisposition of myocardial distribution in the human
coronary artery was associated with a larger lipid burden,
a thinner fibrous cap, and a higher prevalence of TCFA.
The geographical classification of coronary plaques using
IVUS is applicable in clinical settings to elucidate the
complex profile of atherosclerotic plaque.
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