Skip to main content
Figure 4 | Cardiovascular Ultrasound

Figure 4

From: Post-exercise contractility, diastolic function, and pressure: Operator-independent sensor-based intelligent monitoring for heart failure telemedicine

Figure 4

Validation of sensor-based contractility, diastolic function and pressure assessment in the post-exercise period. Upper panels, ecocardiographic quantitative hemodynamic changes during exercise in 52 subjects at rest (Watt 0), progressive graded bicycle exercise workload (blue symbols) and three stages of recovery (red symbols, R1, 3, 5 min). There was a significant increase (overshoot) in the ejection fraction and ventricular-arterial coupling during the first minute of recovery, compared with the end-exercise value. Minimal value of systemic vascular resistance is recognized at peak exercise, and during early recovery. Since contractility is physiologically heart rate-dependent (Bowditch Treppe or force-frequency relation), comparisons of recovery SP/ESV index values were made with exercise values recorded at the same heart rates: plasma catecholamine levels are still elevated during the early phase of recovery and a relatively slow decrease in contractility is observed. Systemic pressure measures were blunted in the post-exercise phase, due to nitric oxide spillover and adenosine accumulation. A transient, favourable mismatch between cardiac contractility and afterload reduction occurs at recovery in normal subjects, and to an even greater degree in diseased hearts. Lower panels, sensor-based data in the same 52 subjects. An effective, significant comparison with echocardiography is feasible for contractility (left, force-frequency relation) and blunted sensor-derived arterial pressure in the post-exercise phase (middle, S2 recording). Diastolic time during stress and diastolic time recovery overshoot monitoring is simple with the sensor, its difficulty comparable with echo measurement (operator-dependent and time-consuming). However, integration of sensor-times and echo-volume allows simple measurement of diastolic filling rate.

Back to article page