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Artificial intelligence in echocardiography: 
detection, functional evaluation, and disease 
diagnosis
Jia Zhou1, Meng Du2, Shuai Chang1 and Zhiyi Chen1,2* 

Abstract 

Ultrasound is one of the most important examinations for clinical diagnosis of cardiovascular diseases. The speed of 
image movements driven by the frequency of the beating heart is faster than that of other organs. This particularity 
of echocardiography poses a challenge for sonographers to diagnose accurately. However, artificial intelligence for 
detection, functional evaluation, and disease diagnosis has gradually become an alternative for accurate diagnosis 
and treatment using echocardiography. This work discusses the current application of artificial intelligence in echocar-
diography technology, its limitations, and future development directions.

Highlights 

1. Application of artificial intelligence (AI) in echocardiography is now widely studied, and AI technique has the poten-
tial to optimize the diagnostic potential of echocardiography.

2. Application of artificial intelligence in echocardiography is important in the following aspects: recognizing the 
standard section, cardiac cavity automatic segmentation, functional left ventricle assessment, and cardiac disease 
diagnosis.

3. Standardized data collection and image annotation are essential for artificial intelligence in echocardiography.
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Background
The application of artificial intelligence (AI) technol-
ogy in cardiovascular imaging has become a research 
hotspot in recent years, as it may reduce treatment cost 
and help avoid unnecessary testing [1]. AI technology 
has been progressively applied for processing multiple 
modal images, such as auxiliary electrocardiograph diag-
nosis [2], cardiac computerized tomography (CT) detec-
tion [3], and radionuclide myocardial perfusion imaging 

[4]. In the diagnosis and treatment of heart diseases, AI 
techniques have been applied to electrocardiography, 
vectorcardiography, echocardiography, and electronic 
health records [5]. As a non-invasive imaging detection 
method for cardiac structure and functional evaluation, 
echocardiography technology has certain limitations. 
These include a long procedure time (more than 20 min, 
even if no abnormalities are detected), multiple measure-
ment values that increase the duration complexity and 
user subjectivity, complex analyses during the evalua-
tion, high standard of individualized assessments [6], 
high operator subjectivity, and wide observation ranges 
and distinctions among observers that persist even under 
standardized conditions. These limitations also lead to a 
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high demand for medical specialist training in the field of 
echocardiography. In recent years, the application of AI 
for diagnosis and treatment using echocardiography has 
been shown to have the potential to solve these problems.

The integration of echocardiography and AI is not 
a brand new topic. Earlier cases of integrated applica-
tion of echocardiography and machine learning can 
be traced back to 1978 when Fourier analysis was used 
to evaluate the waveform of anterior mitral leaflets via 
M-mode ultrasound. Studies have confirmed that this 
method had a remarkable impact on auxiliary diagnosis 
of mitral valve prolapse [7]. Machine learning is a sig-
nificant AI method. Before deep learning was proposed 
in 2006, plenty of machine learning algorithms had 
been applied to echocardiographic evaluation of cardiac 
function, image optimization, and structural observa-
tion in the form of software or cutting edge technology, 
such as semi-automatic speckle tracking technology 
and the Simpson method. In early 2020, the Food and 
Drug Administration announced that it had authorized 
Caption Guidance software from Caption Health to be 
available for sale to collect data from echocardiographic 
images [8] (https:// capti onhea lth. com/). The develop-
ment of novel technologies, such as deep learning and 
neural networks, has effectively improved the efficacy of 
echocardiography [9], making standard section identifi-
cation of cardiac anatomical structures, automatic rec-
ognition and segmentation of cardiac structures, cardiac 

functional evaluation, and auxiliary disease diagnosis 
faster and more accurate [10, 11] (Fig.  1). Although a 
series of articles published in high-level journals posi-
tively affirm the role of AI technology in diagnosis of 
echocardiography [16–18], there are remaining concerns, 
such as insufficient standardization of echocardiography, 
poor robustness, and insufficient generalization of the 
models in clinical applications. This review summarizes 
the application (Table 1) and advantages of echocardiog-
raphy integrated with AI, analyzes the associated limita-
tions, and systematically investigates the future trends of 
AI technology in echocardiography from the perspective 
of practical applications.

Main text
Standard section recognition with assistance of AI 
technology
The anatomical structure of the heart is complex, and 
sonogram genres are disparate. Therefore, it is particu-
larly necessary to manage the recognition and functional 
evaluation of the cardiac structure in different models. 
However, there are numerous standardized sections of 
echocardiography. Patients without abnormalities have 
to undergo 10–20-section scans. Occasional slight angle 
differences among sections cause extreme difficulties 
in identification of various sections for physicians with 
insufficient experience and qualifications, resulting in 
failure to provide accurate and standardized analysis. It 

Fig. 1 Application of artificial intelligence in echocardiography [12–15]

https://captionhealth.com/
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typically takes at least 1 to 2 years for a sonographer to 
grasp the basic echocardiography principles and meth-
ods of operation. In China, many grassroots regions can-
not afford the labor cost of training echocardiography 
physicians. Therefore, two-dimensional (2D) ultrasound 
data sets from more than 500 patients and 7,000 videos 
were gathered from research performed in 2018. A clas-
sification model was then constructed using the method 
of convolutional neural networks by dividing them into 
seven groups of various cardiac views. The model’s clas-
sification accuracy reached 98% [19]. Likewise, research-
ers from the University of California, San Francisco used 
echocardiographic images from 267 patients to classify 
static and dynamic original images using deep learning 
approaches and to build an automatic section recogni-
tion model with classification criteria from 15 standard 
sections. The outcome showed that recognition accu-
racy achieved 97.8%, while physician recognition accu-
racy was approximately 70.2–83.5% [12]. Rapid standard 
section recognition with AI technology can somewhat 
shorten the evaluation time and enhance detection ability 
as well as novice accuracy. This technology has the poten-
tial to be applied in specialized non-echocardiography or 
emergency departments, which would advance opera-
tional efficiency. It can also be extended to the grassroots 
regions where echocardiography physician resources for 
standardized inspection and quality control are scarce.

Functional left ventricle assessment with assistance 
from AI technology
Functional evaluation of the left ventricle is one of the 
most important and routine examination procedures in 
echocardiographic diagnosis. Functional evaluation indi-
cators of the left ventricle systole include left ventricular 
ejection fraction (EF), left ventricular volume, left ven-
tricular wall motion function, myocardial contractility 
and global longitudinal strain (GLS). EF is the most con-
venient and commonly used indicator for evaluating left 
ventricular systolic function. Since EF is a ratio when no 
segmental motion abnormality is present in the ventricu-
lar wall, EF can be determined using an M-mode chart by 
measuring the inside diameter ratio of the left ventricular 
end diastole to systole. A more precise approach for EF 
measurement is the biplane Simpson method, especially 
when segmental motion abnormalities such as myocar-
dial infarction occur in the ventricular wall. The M-mode 
of certain left ventricular sections cannot represent the 
motion of the entire left ventricle. At this time, it is nec-
essary to estimate the overall volume using the Simpson 
method. Regardless of the method employed, evalua-
tions rely on visual observation and manual boundary 
tracing, while repeatability and accuracy depend on the 
physician’s experience [27]. The inter- and intra-observer 

variability can also be substandard when the functional 
left ventricle assessment is performed by a person.

Previous research on left ventricular function assess-
ment with assistance of AI technology has been mainly 
based on automatic segmentation of the left ventricle 
and endocardial tracking technology [13]. At present, 
there are several commercial software packages that 
can achieve high-accuracy 2D and 3D echocardiogra-
phy measurements, which further realize the automated 
assessment of the left heart function. One of the com-
monly used software is the Philips EPIQ series for tran-
sthoracic 3D echocardiography left ventricular cavity 
quantitative system HeartModel (Philips, Eindhoven, 
Netherlands), which utilizes an adaptive analysis algo-
rithm [25, 26]. AutoLV (TomTec Imaging System, Ger-
many) is an additional standard tracking system for left 
ventricular ejection fraction and longitudinal strain. Vari-
ous clinical studies have shown that automatic software 
used to assess the ventricular volume and ejection frac-
tion can provide accuracy that is similar to manual meth-
ods, which has a good correlation with cardiac MRI [27]. 
In spite of this, boundary identification is still prone to 
errors limiting accuracy. With the development of auto-
mated technique, some researchers have tried to reduce 
these errors by using evaluation methods without vol-
ume measurements. These algorithms mimicked what 
an experienced human eye and brain can do, instead of 
tracing the endocardial borders and calculating ventricu-
lar volumes [28, 29]. Since the analyses of GLS are time 
consuming and demand expertise, AI technique can help 
identify the standard apical views, perform timing of 
cardiac events, trace the myocardium, perform motion 
estimation, and measure GLS in less than 15  s. It was 
prove to have highly significant correlation with a con-
ventional speckle-tracking application [30]. Furthermore, 
AI technology may help novices quickly acquire skills 
in quality diagnostic imaging to improve the inter- and 
intra-observer variability [31, 47]. For the prognosis, a 
novel multicenter research demonstrated that AI-based 
LV analyses were significant predictors of mortality, 
which is better than manual measurement. It could mini-
mize variability of quantification of LVEF and LVLS [20]. 
AI can be a game-changer in this field, providing a repro-
ducible LVEF evaluation that is independent of human 
observer.

Automatic segmentation of cardiac cavity with assistance 
of AI technology
The shape and function of the four chambers of the heart 
(left/right ventricle, left/right atrium) are observed fol-
lowing the determination of the cardiogram section. 
If the heart morphology is affected by certain disease-
related factors, the standard pressure and volume will 
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change, resulting in cardiac chamber enlargement, com-
pensatory wall thickening, and cardiac remodeling [21]. 
Therefore, it is important to obtain accurate segmenta-
tion of cardiac ultrasound images and understand the 
morphological changes for clinical diagnosis. Masses of 
echocardiography instruments are equipped with semi-
automatic cardiac chamber segmentation software. 
Manual segmentation is tedious, time-consuming, and 
subjective. Hence, automatic and precise segmentation 
can decrease the occurrence of the above-mentioned 
problems and has favorable clinical values. At present, 
cardiac chambers are automatically segmented by recog-
nizing the endocardial wall in 2D or three-dimensional 
(3D) images, which is common in segmentation of the 
left and right ventricles. During segmentation, the auto-
matic evaluation and accurate measurement of parame-
ters such as cardiac cavity size can also be accomplished.

Left ventricular segmentation
Left ventricular segmentation is popular in the automatic 
segmentation of the heart chamber. The accurate meas-
urement of ejection fraction and evaluation of the move-
ment in left ventricular myocardium can be achieved by 
segmenting the left ventricle. Two- and three-dimen-
sional ultrasound methods are both widely used in the 
assessment of left ventricular segmentation. Compared 
to 2D ultrasound images, 3D-image resolution is lower. 
Manual processing and analysis are also extremely time-
consuming. Fully automatic left ventricular segmentation 
based on ultrasound images remains a challenging task 
due to rapid and large-scale myocardial movements, res-
piratory interference, inconsistent motion between mitral 
valve opening and closing, in addition to inherent noise 
and artifacts in ultrasound imaging. Some methods have 
been proposed to address the above-mentioned issues. 
One solution evaluated the ventricular cavity func-
tion based on information such as variance to prioritize 
endocardial boundary refinement [13], followed by con-
tinuously tracking and measuring endocardial boundary 
deformation during the cardiac cycle. The other approach 
is to apply the radial active contour method Snake to seg-
ment the ventricle from the short-axis view instead of 
the long-axis view with a large deformation. This method 
is less influenced by noise and artifacts and has a more 
solid robustness [22]. In addition, for the automatic seg-
mentation of the left ventricle in a 3D echocardiogram, 
segmentation performance can be effectively boosted by 
adding the maximum cross-correlation (MCC) values of 
the highest contrast between blood and heart tissues in 
the model. The MCC values help to obtain better recog-
nition and segmentation effects when blood and myocar-
dial-echo contrast is low [48]. A variety of methods used 
for accuracy improvement of the endocardial boundary 

recognition will prompt the precision of the automatic 
left ventricular segmentation.

Right ventricular segmentation
Compared to left ventricular segmentation, right ven-
tricular segmentation presents a relatively difficult-
to-resolve problem. These problems are related to the 
characteristics of the right ventricle and its wall, includ-
ing complex crescent-shaped structure, presence of 
trabecular myocardium, thinner and weaker right ven-
tricular walls, irregular endocardium shapes and edges 
on cardiogram images, and relatively poor image qual-
ity due to its behind-sternum, location leading to lung 
gas irruption and shadow of the sternum. These cause 
blurred ventricular wall echo and even disappearance of 
entire lateral walls in some images. However, accurate 
evaluation of right ventricular function is significant for 
functional analysis of the circulatory system, surgery 
selection of congenital heart disease (CHD), and predic-
tion and evaluation of heart failure. The precise identifi-
cation and segmentation of right ventricular ultrasound 
images can quickly and efficiently capture the diameter, 
area, and volume of the right ventricle, myocardial thick-
ness, fractional area changes, as well as other indicators 
to provide more information for auxiliary clinical diag-
nostics. To overcome these issues, Qin et  al. proposed 
an automatic segmentation framework based on the 
sparse matrix transform and introduced a wall thickness 
constraint feature. A positive segmentation result was 
acquired via detection of endocardium and epicardium at 
the same time when the lateral walls are blurred [23]. In 
addition, Bersvendsen et al. proposed and constructed a 
multi-chamber model based on how the chambers inter-
act while performing the pumping function, which allows 
for coupled segmentation of endo- and epicardial bor-
ders of the left and right ventricle. The establishment of 
the multi-chamber model can allow for a complete clini-
cal condition evaluation [24]. In general, when the image 
quality is poor, the precision of right ventricular segmen-
tation is dependent on previously obtained information 
and correlation with other heart structures, such as myo-
cardium, epicardium, and left ventricle.

Atrial and multi‑chamber heart segmentation
Echocardiographic atrial segmentation has certain appli-
cation values in minimally invasive interventional treat-
ment of arrhythmia such as cardiac electrophysiology. 
For example, in radiofrequency ablation treatment of 
atrial fibrillation, 3D transesophageal echocardiography 
(3D-TEE) can be utilized to guide cardiac electrophysi-
ological intervention (locating ablation points) in real 
time. However, there is a prerequisite that the changes 
in the atrial anatomical structure have to be real-time 
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monitored for precise positioning [49]. Accordingly, 
Alexander et  al. have applied an active shape model 
derived from computed tomography angiography (CTA) 
in a multi-chamber to segment the atrioventricle in a 
3D-TEE image, improving segmentation accuracy in the 
left atrium, which previously had a poor segmentation 
performance. Furthermore, because 3D-TEE segmen-
tation in the left atrium is vulnerable to scanning range 
restrictions, the team adopted fusion-imaging technol-
ogy to merge the CTA and 3D-TEE images for construc-
tion of wide-view 3D-TEE images, which contributed to 
left atrial segmentation resolution and enhanced seg-
mentation efficiency. This research has an important sig-
nificance for cardiac surgery, where it can help to provide 
precise positioning for atrial fibrillation ablation [50, 51].

Although AI technology can effectively segment atrio-
ventricular structures in echocardiography, recognition 
and segmentation precision needs to be advanced fur-
ther due to interference of lung gas, ribs, and artifacts. 
Algorithm updates, such as multiple iterations, efficient 
search methods, particle filters, and online collaborative 
training approaches, combined with deep learning algo-
rithms and multiple dynamic models [52] will further 
optimize echocardiographic segmentation performance.

Cardiac disease diagnosis with assistance of AI technology
Valvular heart disease
Routine echocardiography can visually investigate car-
diac valve shapes and activities. Its repeatability is not 
reliable due to subtle valve structure variations and wide 
heart motion ranges, as well as the intra- and inter-
observer differences in recognizing valve stenosis, pro-
lapse, calcification, and valve insufficiency. The mitral 
and aortic valves are the objectives of AI technology in 
cardiac valve evaluation, especially focusing on observa-
tion of valve morphology and regurgitation. Similarly, AI 
technique is helpful in the assessment of valvular heart 
disease. For example, automatic evaluation software for 
proximal isovelocity surface area (PISA) of mitral insuffi-
ciency can conduct an automatic measurement of mitral 
valve regurgitant orifice area and regurgitant volume to 
evaluate the severity of valve regurgitation. PISA for 3D 
echocardiography has a superior accuracy compared to 
2D image analysis software, which has excellent consist-
ency with transesophageal ultrasound and MRI meas-
urements [32, 33]. Another study [34] used real-time 
3D volume color-flow Doppler technique to quantify 
valve regurgitation volume, which also achieved high 
consistency in MRI measurements. In addition, valve 
morphology can be automatically analyzed by imple-
menting automated measurements of the morphologi-
cal mitral valve parameters, including 3D ring length 
and height, 2D area, commissural width, overlap width, 

3D leaflet area, anterior and posterior leaflet angle, non-
planar angle, prolapse, valve height, and volume. Previ-
ous research has confirmed that there is no significant 
difference between automatic and manual measurements 
[14]. This type of semi-automatic software has a favorable 
diagnostic value for valve morphology-related diseases 
such as mitral valve prolapses. It also enhances the non-
experts’ accuracy in prolapse detection [35]. It can also 
be employed for intervalvular monitoring with advan-
tages of consistency and repeatability [36].

Structural abnormalities in the congenital aortic valve, 
senile aortic valve calcification, and rheumatic fever are 
the common causes of aortic stenosis (AS). The method 
of aortic valve replacement is crucial for severe AS. 
Before valve replacement surgery, valve diameter meas-
urement and areas in 2D echocardiography have been 
manually detected to evaluate the level of valve stenosis 
and provide a sufficient basis to determine the size of arti-
ficial valves. However, because of the dynamic changes 
in the position of aortic valves in vivo, 2D static image-
based assessment is not only subjective but also only 
reveals the measurement results of one or two frames 
during the cardiac cycle. Some research studies [37] have 
adopted an automatic tracking algorithm based on ana-
tomical affine optical flow for fast and automatic tracking 
of aortic valves and proximal end of the left ventricular 
outflow tract using 3D-TEE technology to optimize the 
measurement. It provides dynamic and accurate support-
ing information for preoperative planning of aortic valve 
replacement surgery, helping to improve the accuracy of 
valve evaluation and enhancing surgeon confidence.

Cardiomyopathy
Cardiomyopathy can be classified into two major catego-
ries of primary and secondary cardiomyopathy according 
to the cause. AI-assisted echocardiographic diagnosis of 
cardiomyopathy can be carried out via multiple imaging 
modes, such as 2D ultrasound, M-mode, and color Dop-
pler. Based on accurate wall recognition and ventricular 
segmentation, automatic measurement of ventricular 
volume measurement, accurate assessment of cardiac 
function, and accurate visualization of myocardial move-
ment through speckle tracking technology can be real-
ized. The acquisition of these indicators helps to achieve 
rapid and precise detection of hypertrophic cardiomyo-
pathy and cardiac amyloidosis. In the latest research, a 
human-interpretation-free machine learning pipeline 
based on the combination of ECG and echocardiography 
had been developed to detect cardiac amyloidosis. Multi-
center study had confirmed that the artificial intelligence-
enabled fully automated detection model outperformed 
interpretation by expert cardiologists in the diagnosis 
of cardiac amyloidosis [38]. On the other hand, speckle 
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tracking imaging technology is widely used for the diag-
nosis of cardiomyopathy. Myocardial strain analysis is 
helpful for diagnosis of various types of cardiomyopathy 
[39]. Sengupta et  al. created a machine learning algo-
rithm based on speckle tracking technology images to 
distinguish between constrictive pericarditis and restric-
tive cardiomyopathy using an associative memory clas-
sifier (AMC). As an additional challenge, both of the 
diseases have similar ultrasonographic features, such as 
enlarged left and right atrium, relatively small ventricle, 
pericardial effusion, and widening vena cava. Clinical 
diagnosis emphasizes the changes in myocardial strain 
parameters. For example, strain values of left ventricular 
walls in constrictive pericarditis are significantly lower 
than those of ventricular septa, while restrictive car-
diomyopathy does not have this feature. The study used 
AMC to demonstrate that analysis of the first 15 speckles 
tracking echocardiographic variables can classify diseases 
more accurately (area under the curve (AUC) of 89.2%). 
This method is better than the Doppler method alone 
(AUC of 82.1%) and the overall longitudinal strain (AUC 
of 63.7%), which obtained precision results. The study 
also used machine learning to automatically distinguish 
between male patients with hypertrophic cardiomyopa-
thy and athlete cardiac physiological hypertrophy [40]. 
Due to the diversification of ventricular morphology in 
patients with dilated cardiomyopathy (DCM), segmen-
tation of the left ventricular boundary (especially seg-
mentation near the ventricle apex) is more complex than 
that of the normal left ventricle. To address the ventricu-
lar wall changes caused by DCM, Mahmood et  al. [41] 
applied a support vector machine classifier to distinguish 
between normal and dilated left ventricles. Although 
the average classification accuracy of the study was only 
77.8% (affected by cumulative errors), size evaluation 
accuracy of the left ventricle reached 87.2% and left ven-
tricular boundary segmentation accuracy was 89.3%. The 
ROI region recognition accuracy was 92.5%, providing a 
research foundation for further development of reliable 
decision-making tools.

Coronary atherosclerotic heart disease
Coronary heart disease, also known as coronary ath-
erosclerotic heart disease, is one of the most common 
coronary artery diseases, which is classified as a special 
type of cardiomyopathy. Echocardiography can assist 
in its diagnosis by visually observing myocardial move-
ment and changes in cardiac morphology. AI technol-
ogy can effectively improve subjectivity of conventional 
echocardiographic examination of coronary heart dis-
ease, increase detection systematicity, and help to better 
distinguish between normal and infarcted myocardial 
images [53]. For the ultrasound diagnosis of coronary 

heart disease combined with AI technology, experts 
have utilized the method of discrete wavelet transform 
and texture feature analysis [42], showing that the AI 
method using classifiers to automatically sort echocar-
diographic images can provide the characteristic param-
eters required for clinical diagnosis, as well as reduce the 
occurrence of complications. In terms of 3D ultrasound 
heart imaging, studies [43] have constructed myocar-
dial infarction models in pigs and sheep and applied the 
EchoPAC PC (GE, Andover, MA, USA) program to ana-
lyze results. This method is a semi-automatic assessment 
of left ventricular quality and local strain values. In addi-
tion to traditional ultrasound examinations, myocardial 
perfusion can diagnose coronary artery disease by quan-
tifying the infarct area via examination of myocardial 
contrast ultrasound. The AI method can also perform an 
automatic calculation of myocardial perfusion parame-
ters and reduce human error [15]. Echocardiography can 
be integrated with machine learning to obtain a huge set 
of clinical data on echocardiographic changes. Machine 
learning can integrate these data into categories to assist 
physicians in accurately and rapidly diagnosing myo-
cardial ischemia changes. In the prognosis of coronary 
heart disease, a previous research had develop a method 
based on texture parameters of native echocardiogram or 
contrast-enhanced acquisition to evaluate left ventricular 
function recovery 1 year after myocardial infarction. The 
highest rates of accurate prediction reached to 79% [44].

Diagnosis of intracardiac masses
In addition to the auxiliary diagnosis of the above-
mentioned conventional diseases, AI technology can be 
applied to classify and recognize intracardiac masses (like 
left atrium/ear thrombosis, cardiac tumors and vegeta-
tion) [45]. For example, due to the complex and diverse 
anatomical structures of the left atrial appendage and the 
limited range of motion of the TEE probe, the resulting 
ultrasound artifacts may lead to misdiagnosis. Diagno-
sis through images of the left atrial (auricular) thrombo-
sis depend on the patient’s anticoagulant drug plan. Sun 
et  al. [46] performed transesophageal echocardiography 
on 130 patients with atrial fibrillation with image recon-
struction. Subsequently, the study extracted the texture 
features of the gray-level co-occurrence image matrix and 
performed the classification using artificial neural net-
works. The model classification AUC was 0.932, which is 
much higher than sonographer’s diagnosis, where AUC 
was 0.834. The study demonstrated that the Artificial 
Neural Network model can significantly improve TEE 
diagnosis of the left atrium (ear) thrombosis in patients 
with atrial fibrillation, which is conducive to early diag-
nosis and treatment [54].
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Clinical application limitations
In addition to black box effects, overfitting problems, 
ethical issues, and other common limitations associated 
with AI application in the medical field [55], AI echocar-
diography limitations also exist. First, echocardiography 
is not a bloodless mechanical operation. Communication 
between physicians and patient plays an indispensable 
role in disease diagnosis, while the current AI technology 
has not been able to perform human–computer interac-
tions. In the future, there is a possibility that clinical work 
performed by a physician will be gradually substituted by 
AI, which will not in favor of further model optimization 
and sustainable development [56]. Based on our experi-
ences, echocardiography and AI-integrated application, 
standardized data collection, and image annotation are 
essential. Due to its complexities and rapid heartbeat, the 
echocardiographic section standardization is more dif-
ficult compared to other organ section standardization, 
which may not conducive to the data collection in multi-
center studies [57]. Furthermore, the difference of physi-
ological and anatomical structures of the heart among 
races can not be ignore. It means that the model with a 
high accuracy on one specific dataset may not be feasible 
on another data set [58].Therefore, while accepting the 
assistance of this technology, sonographers should also 
consider how to utilize its best functions and determine 
what outcomes need to be adapted for patients.

Conclusion and future outlook
Rich potential information contained in echocardio-
grams can be extracted and utilized by AI technology 
to boost the accuracy of diagnosis. At present, AI tech-
nology software is used to examine cardiac ultrasounds, 
such that the process no longer depends as much on the 
sonographer’s skills and experience, and with the added 
benefit of rapid disease diagnosis. The promising expan-
sion of telemedicine with mobile and wireless technolo-
gies has produced unprecedented progress in the field of 
cardiovascular imaging [59]. With the implementation 
of remote echocardiography and application of robotic 
arms in 2014, as well as the realization of robot-assisted 
minimally invasive cardiac surgery, AI robotics technol-
ogy also provides sufficient support to acquire, identify, 
and quantitatively analyze echocardiograms [60, 61]. 
With the continued development of AI technology, the 
future pattern of echocardiography will gradually trans-
form to provide practical auxiliary assistance for patients.
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