
Zha et al. Cardiovascular Ultrasound           (2023) 21:19  
https://doi.org/10.1186/s12947-023-00317-5

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Cardiovascular Ultrasound

Deep learning for automated left ventricular 
outflow tract diameter measurements in 2D 
echocardiography
Sigurd Zijun Zha1*, Magnus Rogstadkjernet1, Lars Gunnar Klæboe2, Helge Skulstad1,2, Bjørn‑Jostein Singstad2, 
Andrew Gilbert3, Thor Edvardsen1,2, Eigil Samset1,3 and Pål Haugar Brekke2 

Abstract 

Background Measurement of the left ventricular outflow tract diameter (LVOTd) in echocardiography is a common 
source of error when used to calculate the stroke volume. The aim of this study is to assess whether a deep learning 
(DL) model, trained on a clinical echocardiographic dataset, can perform automatic LVOTd measurements on par 
with expert cardiologists.

Methods Data consisted of 649 consecutive transthoracic echocardiographic examinations of patients with coro‑
nary artery disease admitted to a university hospital. 1304 LVOTd measurements in the parasternal long axis (PLAX) 
and zoomed parasternal long axis views (ZPLAX) were collected, with each patient having 1–6 measurements 
per examination. Data quality control was performed by an expert cardiologist, and spatial geometry data was pre‑
served for each LVOTd measurement to convert DL predictions into metric units. A convolutional neural network 
based on the U‑Net was used as the DL model.

Results The mean absolute LVOTd error was 1.04 (95% confidence interval [CI] 0.90–1.19) mm for DL predictions 
on the test set. The mean relative LVOTd errors across all data subgroups ranged from 3.8 to 5.1% for the test set. Gen‑
erally, the DL model had superior performance on the ZPLAX view compared to the PLAX view. DL model precision 
for patients with repeated LVOTd measurements had a mean coefficient of variation of 2.2 (95% CI 1.6–2.7) %, which 
was comparable to the clinicians for the test set.

Conclusion DL for automatic LVOTd measurements in PLAX and ZPLAX views is feasible when trained on a limited 
clinical dataset. While the DL predicted LVOTd measurements were within the expected range of clinical inter‑
observer variability, the robustness of the DL model requires validation on independent datasets. Future experiments 
using temporal information and anatomical constraints could improve valvular identification and reduce outliers, 
which are challenges that must be addressed before clinical utilization.
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Graphical Abstract

Background
Echocardiography is an essential tool in the assess-
ment of hemodynamics, cardiac function and anatomi-
cal abnormalities with great availability as well as being 
cost efficient. The left ventricular outflow tract diame-
ter (LVOTd) is a routinely performed measurement for 
all echocardiographic examinations [1] and is essential 
when used together with the velocity time integral for 
deriving fundamental parameters for cardiac function-
ality such as stroke volume and cardiac output. Meas-
urement of the LVOTd is particularly important when 
assessing patients with aortic stenosis, where the rec-
ommended approach relies on stroke volume estimates 
at the level of the left ventricular outflow tract to eval-
uate stenotic severity of the aortic valve area with the 
continuity equation [2].

Accurate estimates of the stroke volume are highly 
dependent on the variability of the LVOTd measure-
ment which includes the choice of frame in the echo-
cardiographic cine-loop in addition to operator cursor 
placements during measurement. While inter-observer 
variability for measuring the velocity time integral is 
considered to be small, the variability for LVOTd meas-
urements has been reported to be 4–8% [2–5]. Since the 
LVOTd is squared when used to calculate stroke volume, 

this aggravates inaccuracies, making it a considerable 
source of error.

In recent years, Deep Learning (DL) with Convolu-
tional Neural Networks (CNN) has become frequently 
used for research in echocardiography for a wide range 
of image interpretation tasks [6–10]. Earlier works have 
demonstrated that DL methods are highly feasible for 
performing dimensional measurements in echocardiog-
raphy, such as the left ventricular diameter [11–13], left 
ventricular posterior wall and interventricular septum 
thicknesses [11, 12], left ventricular longitudinal length 
[14] and mitral annulus diameter [15]. In the previous lit-
erature, DL methods for assessment of the left ventricu-
lar outflow tract have only been described in the work 
of Smistad et al. [16], which was a study that focused on 
segmentation of the PLAX view, rather than attaining 
clinically applicable measurements.

The current study uses a novel clinical dataset to train 
a CNN for automatic LVOTd measurement in 2D tran-
sthoracic echocardiographic images, with direct compar-
ison to measurements of expert physicians. All patients 
in the dataset have had rigorous LVOTd evaluation, with 
the majority having repeated LVOTd measurements dur-
ing the same examination, according to hospital proto-
col. Furthermore, subsequent quality control of the data 
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has been performed by an expert cardiologist for further 
clinical validity. Using a high-quality dataset of moderate 
size as a foundation, we wish to investigate the viability of 
state-of-the-art DL methods in contemporary echocar-
diographic workflows.

Methods
Study population
Data was extracted from clinical database of transtho-
racic echocardiograms of 656 patients with coronary 
artery disease admitted to a university hospital in the 
period January - December 2018. Inclusion criteria 
required LVOTd measurements to be performed in the 
parasternal long axis (PLAX) or zoomed parasternal long 
axis (ZPLAX) view, using GE HealthCare Vivid E95 ultra-
sound devices, according to recommended guidelines 
[2, 17]. 7 patients were excluded due to having LVOTd 
measurements in the apical long axis view or measure-
ments falsely stored as LVOTd. Echocardiographic exam-
inations from 649 patients were anonymized, making 
age (65.1 ± 12.5 years) and gender (70% males) the only 
demographic details available.

While the hospital protocol at the site of data acquisi-
tion recommended 3 LVOTd measurements per patient 
examination, the actual number of measurements ranged 
from 1–6, with 56% of patients having more than 1 
LVOTd measurement. Each LVOTd measurement was 
performed on a single echocardiographic still frame from 
a unique echocardiographic cine-loop, making repeated 
measurements individually distinct, despite originat-
ing from the same echocardiographic examination. All 
repeated LVOTd measurements were assumed to be 
performed by a single clinician, but the total number 
of clinicians involved in acquisition of the dataset was 
unavailable. In total, 1304 LVOTd measurements were 
acquired from 649 unique patient examinations.

Data processing
The data distribution in the final dataset was 569 PLAX 
and 735 zoomed ZPLAX LVOTd measurements. For 
every LVOTd measurement, an echocardiographic still 
frame, and two LVOTd coordinates corresponding to 
the measurement cursors placed by the clinical operator, 
were extracted as a basis for input and ground truth data. 
In supervised machine learning, the “ground truth” desig-
nates the reference value to which the model prediction is 
compared, in order to make adjustments during training. 
All extracted echocardiographic still frames and LVOTd 
coordinates were rescaled to accommodate a resolution 
of 256 × 256 pixels for standardization. Since LVOTd 
measurements were acquired at different levels of image 
zoom, the pixel unit in each echocardiographic still frame 
corresponded to a different real-life metric unit. To allow 

conversion of predicted LVOTd coordinates from pixel 
units to metric units, spatial geometry data was extracted 
for each respective LVOTd measurement.

For model implementation, the dataset was ran-
domly split into training, validation, and testing (68%, 
17%, 15%) sets. Since most patients had more than 
one LVOTd measurement, data partitioning was done 
patient-wise to prevent overlaps between the datasets. 
Details of dataset distributions are provided in the 
supplement (Supplemental Tables 1 and 2).

Data quality control
Prior to training the DL model, the dataset was sub-
jected to manual quality assessment by an experienced 
cardiologist, both in terms of the visual quality of the 
echocardiographic image, and placements of the ground 
truth LVOTd coordinates. Each individual data pair 
was therefore given two ratings of “High”, “Medium” or 
“Low”, separately in terms of image quality and accuracy 
of cursor placements for the measured LVOTd. Details of 
quality label distributions of the training and test set are 
provided in the supplement (Supplemental Matrices  1 
and 2).

Model implementation
An open-source Pytorch implementation [18] of a U-Net 
[19] with an EfficientNet-B2 [20] encoder was used as the 
basis for the DL model. A loss function based on coor-
dinate regression [21] was used for DL model training, 
since regression methods based on probability maps have 
previously shown effectiveness for point location tasks 
in echocardiography [11–13, 15]. The use of probability 
maps in the DL model also allows for easier spatial visu-
alisation of image regions emphasised during prediction.

Image augmentation and model pre-training were also 
employed as they are common data-extension meth-
ods when training DL models with limited datasets. All 
image augmentations were performed at random using 
an in-house Sci-kit Image [22] implementation, which 
included rotations, shifting, aspect ratio modification, 
cropping, blurring, noise addition, modifications of expo-
sure and brightness, magnification and de-magnification. 
Effort was made to retain the clinical plausibility of aug-
mented images by enforcing constraints on the range of 
modification of each random augmentation. For model 
pre-training, weights from models trained on the public 
ImageNet [23] dataset were used for initialization.

Model validation and development
Model validation was performed using both the accura-
cies of the predicted LVOTd coordinates and the LVOTd 
length. For assessment of LVOTd coordinate placements, 
the mean pointwise Euclidean distance (ED) between the 
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predicted LVOTd coordinates and ground truth LVOTd 
coordinates was used.

A visualisation of ED in relation to ground truth and 
DL predicted LVOTd coordinates is provided (Fig. 1).

Since the anatomical plane in the PLAX and ZPLAX 
views generally presents the LVOT in a horizontally 
inclined manner, predicted LVOTd coordinates were also 
evaluated in terms of their relative deviation to the x-axis 
and y-axis. As for LVOTd length, this was derived from 
the predicted LVOTd coordinates using the magnitude of 
the vector between the two coordinates.

To minimise the influence of poor-quality data during 
development, all LVOTd measurements with a “Low” 
quality rating in either image quality or LVOTd cursor 
placements were removed to establish a solid baseline. 
5-fold cross-validation was employed during development 
for consistent evaluation. Model parameters were deter-
mined with a grid search which resulted in a learning rate 
of 0.003, a batch size of 32, 30 training epochs and Adap-
tive Moment Estimation [24] as the optimizer. Different 
loss functions and data configurations were experimented 
with during development, with details from 5-fold vali-
dation being provided in the supplement (Supplemental 
Tables 3 and 4). The inclusion of “Low” quality data was 
included in the training of the final DL model as better 
performance was observed during 5-fold validation. The 

ED = (x1 − x2)
2
+ (y1 − y2)

2

Mean pointwise ED =
EDsuperior LVOTd coordinate + EDinferior LVOTd coordinate

2

supplement provides additional experiments on the effect 
of data quantity (Supplemental Figure  5) and alternate 
network architectures (Supplemental Tables  9 and 10) 
which were also conducted on the test set.

Statistical analysis
For all statistical analysis, the test set is presented in its 
entirety, but also according to specific subgroupings such 
as PLAX, ZPLAX and exclusion of “Low” quality data. 
Means with 95% confidence intervals (95% CI) and medi-
ans with interquartile ranges (IQR) were calculated for 
absolute and relative LVOTd errors. All statistical values 
have been calculated on LVOTd dimensions after con-
version from pixels to millimetres (mm) for direct clini-
cal interpretability. Bland-Altman plots [25] were used 
to visualise trends between the clinical and DL predicted 
LVOTd measurements. Correlation plots with calculation 
of the Pearson coefficient were also performed. T-Tests 
were used to evaluate differences in precision between 
the clinicians and the DL model. StataSE 16 was used for 
all statistical measures.

Since the repeated LVOTd measurements had to be per-
formed on still frames from unique echocardiographic cine-
loop acquired by the same operator, the method of data 
aquisition share similarities with studies evaluating scan-
rescan variability [26]. The differences in the current study 
are that the repeated measurements are performed within 
the same echocardiographic examination in addition to 
patients having a non-uniform number of repeated meas-
urements. In order to include as many patients for precision 
evaluation though calculation of the coefficient of variation, 
the two LVOTd measurements with the largest difference 

Fig. 1 Illustration shows the pointwise ED of the superior‑ and inferior LVOTd coordinate between the DL prediction and the ground truth 
that is calculated during model training. The ED is annotated in yellow, the DL prediction is annotated in red, and the ground truth is annotated 
in blue
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from clinical measurement, were used for patients in the 
test set exceeding two repeated measurements. The cur-
rent study therefore uses a modified approach to traditional 
scan-rescan variability referenced as “examination scan-
rescan variability”. All patients with a single LVOTd meas-
urement in the test set, and after data subgrouping, were 
excluded prior to analysis of presicion.

Results
LVOTd
The DL model had a mean absolute LVOTd error of 
1.04 (95% CI 0.90–1.19) mm when used to predict all 
entries in the test set. When excluding data with “Low” 
quality in either image quality or ground truth annota-
tions from the test set, the mean absolute LVOTd error 
was 0.87 (95% CI 0.74–1.00) mm. The median absolute 
LVOTd errors were lower compared to the mean for all 
subgroups due to the presence of outliers, and it was 
generally observed that the DL model performed bet-
ter on ZPLAX views compared to PLAX views in terms 
of absolute and relative LVOTd error (Table 1). Bland-
Altman plots for the signed LVOTd error showed a 

slight trend towards underestimating smaller and over-
estimating larger LVOTd dimensions (Fig.  2). Limits 
of agreements were determined to be from − 2.87 to 
2.83  mm. Correlation plots showed a significant cor-
relation between the methods with the Pearson coef-
ficient being calculated to 0.80 (p < 0.001) (Fig.  2). 
Samples of DL predictions from the 50th percentile and 
an outlier prediction were provided for visualization 
(Fig.  3). Normalized plots of the relative positions of 
the DL predictions compared to the reference clinical 
LVOTd measurements were performed for added inter-
pretation (Fig. 4). While the DL model manage to per-
form LVOTd predictions for all entries in the test set, 3 
large outliers were deemed as failures (Fig. 4).

Examination scan‑rescan variability
Results show that the DL model had comparable exam-
ination scan-rescan variability with the clinicians 
regardless of view type or data quality (Table  2). While 
clinicians had slightly lower mean precision for LVOTd 
measurements for most data subgroups, the DL model 
had greater precision in the ZPLAX view. The highest 

Table 1 Absolute‑ and relative LVOTd errors for the DL model on the test set

Data groupings (n = images, patients) Mean absolute LVOTd 
error (95% CI)

Median absolute 
LVOTd error (IQR)

Mean relative LVOTd 
error (95% CI)

Median relative 
LVOTd error 
(IQR)

All data (n = 194, 94 patients) 1.04 (0.90–1.19) mm 0.76 (0.39–1.25) mm 4.6 (3.9–5.2) % 3.2 (1.7–5.7) %

PLAX data (n = 100, 56 patients) 1.11 (0.93–1.36) mm 0.86 (0.49–1.32) mm 5.1 (4.1–6.1) % 3.7 (2.1–5.9) %

ZPLAX data (n = 94, 41 patients) 0.94 (0.75–1.13) mm 0.59 (0.31–1.23) mm 4.0 (3.2–4.8) % 2.5 (1.2–5.2) %

Removing “Low” quality data (n = 135, 72 patients) 0.87 (0.74–1.00) mm 0.63 (0.35–1.12) mm 3.8 (3.2–4.4) % 2.8 (1.6–4.9) %

Fig. 2 Bland‑Altman plot and correlation plot comparing the DL predicted and clinical reference LVOTds. Bland‑Altman plot: mean denotes 
the signed mean. LOA denotes the limits of agreement.  Correlation plot: reference denotes the perfect fit. Best fit denotes the best fit for the test 
set. High, medium, and low denote the image quality of the echocardiographic still frame
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precision for the DL model was observed for ZPLAX 
views, which had a mean coefficient of variation of 1.5 
(1.1–2.0) %. In comparison, the clinicians had the highest 
precision for PLAX views, which had a mean coefficient 
of variation of 1.6 (1.1–2.1) %. Reduction of outliers for 

the DL model was observed when removing “Low” qual-
ity data, which yielded a mean coefficient of variation of 
2.0 (1.4–2.5) %. Comparisons of the coefficients of vari-
ation between the clinicians and the DL model showed 
no statistical differences across all subgroups. Box-plots 

Fig. 3 Examples of LVOTd predictions along with probability maps of the LVOTd superior coordinate and inferior coordinate by the DL model. SC 
denotes the probability map for the superior coordinate while IC denotes the probability map for the inferior coordinate. The DL predicted LVOTd 
is annotated in red, while the clinical reference LVOTd is annotated in blue

Fig. 4 Visualisation of the relative placement of DL predicted LVOTds when normalising all clinical reference LVOTds to a fixed position and length. 
The DL predicted LVOTds are annotated in red and the normalised clinical reference LVOTd is annotated in blue
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showed that the DL model produced more outliers for 
examination scan-rescan variability in the PLAX view 
(Fig. 5).

Discussion
Despite not being the first study that uses DL methods 
for assessment of left ventricular outflow tract [16], it is 
the first study that utilises a clinical dataset, to perform 
automatic LVOTd measurements with direct comparison 
to clinical experts. The results show that DL predicted 
LVOTd measurements are feasible for both PLAX and 
ZPLAX views encompassing a broad range of LVOTd 
dimensions and data qualities. DL predicted LVOTd 
measurements from the test set were within the expected 
range of inter-observer variability reported by previ-
ous studies [2–4], with the exception of 3 major outliers. 
Similarly, results from examination scan-rescan variabil-
ity show comparable precision for the DL model to that 
of clinicians, suggesting that the DL model is robust for 

operator variations during echocardiographic cine-loop 
acquisition.

Clinical implications
From the results it was interesting to observe that the 
DL model generally performed better on ZPLAX images 
compared to PLAX frames across all metrics. This find-
ing is in concordance with the current clinical guide-
lines [2], where ZPLAX is recommended the standard 
for LVOTd measurements. Although comparisons of 
precision showed no statistical difference between the 
DL model and clinicians for ZPLAX, this does demon-
strate potential for DL methods in LVOTd measure-
ments. Another motivation for DL methods is that they 
are inherently deterministic by design, meaning that any 
unique input will result in the same output. DL methods 
are therefore fully reproducible which eliminates inter- 
and intra-observer variability. A previous study on DL 
methods for echocardiographic measurements, showed 
that the DL predicted measurements were generally in 

Fig. 5 Box‑plots comparing precision for the DL model and clinicians for patients with repeated LVOTd measurements in the test set. Solid boxes 
represent the interquartile range. The whiskers represent the upper and lower adjacent values

Table 2 Precision with coefficient of variation for the DL model and clinicians for patients with repeated LVOTd measurements in the 
test set

Data groupings 
(patients)

Mean coefficient of 
variation for clinicians 
(95% CI)

Median coefficient of 
variation for clinicians 
(IQR)

Mean coefficient 
of variation for DL 
predictions (95% CI)

Median coefficient 
of variation for DL 
predictions (IQR)

P‑values

All data (54 patients) 1.9 (1.6–2.3) % 1.8 (0.8–2.6) % 2.2 (1.6–2.7) % 1.8 (0.8–2.8) % 0.48

PLAX data (26 patients) 1.6 (1.1–2.1) % 1.3 (0.7–2.2) % 2.6 (1.7–3.5) % 2.1 (1.1–2.8) % 0.06

ZPLAX data (30 patients) 2.0 (1.5–2.4) % 1.8 (0.8–2.6) % 1.5 (1.1–2.0) % 1.4 (0.4–2.4) % 0.20

Removing “Low” quality 
data (37 patients)

1.7 (1.2–2.1) % 1.3 (0.7–2.2) % 2.0 (1.4–2.5) % 1.6 (0.8–2.8) % 0.38
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the middle spread when compared to individual experts 
[11]. While this analysis was unavailable in the current 
study, due to lack of operator information, this is a good 
example on how DL models generalizes information. For 
clinical use, DL predictions could potentially serve as a 
second opinion which could be beneficial for less expe-
rienced operators. For guidelines recommending multi-
ple repeated measurements, the near instantaneous DL 
predictions also have the potential to significantly reduce 
time consumption during examination.

However, it should be emphasized that the results from 
the current DL implementation is still far from being 
superior to clinicians and present many limitations. An 
example of this would be the outlier prediction presented 
in Fig.  3, which would never been made by a clinician. 
In the previous literature investigating DL methods in 
echocardiography, erroneous predictions are commonly 
associated with poor image quality [6, 27–29]. The nega-
tive association for poor-quality data on DL model per-
formance was consistent with the results, with reductions 
of LVOTd error and outliers when omitting “Low” qual-
ity data from the test set. Exclusion of poor-quality data 
is not possible in clinical practice due to many patients 
having challenging anatomies, and echocardiogram 
acquisition being highly dependent on operator skill and 
adjustments.

The current results do however suggest that DL meth-
ods could be utilized as a supplementary tool to standard 
clinical measurement of LVOTd. An important prereq-
uisite for the clinical usage of DL models, is that predic-
tions must be performed in a manner that is interpretable 
for validation. A “black-box” implementation directly 
predicts the LVOTd is therefore unacceptable.

The current DL implementation addresses clinical 
interpretability by being trained to predict the LVOTd 
coordinates rather than the LVOTd dimension, which 
mimics the current clinical workflow. Insight in how the 
DL predictions are performed can be visualised through 
the probability maps generated by the final layer of DL 
model in Fig.  3. For the DL predictions sampled from 
the 50th percentile, areas with high probability centralise 
around a distribution that seemingly follows the LVOT 
walls. In comparison, the outlier DL prediction shows a 
distinctly different probability distribution, suggesting 
uncertainty in the prediction. Differences to clinical rea-
soning are however evident for the DL model, as some 
probability distributions extend distally past the hinge 
points of the aortic valve. This could be a consequence 
of the current DL implementation which emphasizes the 
mass-centre of the probability distributions. A contrib-
uting factor to the extended probability maps from the 
DL model, could also be attributed to the lack of valvu-
lar leaflet movements, which increases the difficulty in 

pinpointing the aortic hinge points. The addition of con-
textual information such as consecutive frames from an 
echocardiographic cine-loop or anatomical constraints, 
could potentially improve DL predictions for future 
experiments.

Since DL algorithms are deterministic, comparison 
of inter-and interobserver variation would always be in 
favour of the DL model. Assessment of DL model con-
sistency was therefore performed using scan-rescan 
variability [26], which factors in the physiological and 
environmental variability during repeat scanning. When 
assessing the examination scan-rescan variability it is 
important to consider that the current DL implementa-
tion performs all LVOTd predictions independently with-
out knowledge of the respective patient. In comparison, 
repeated LVOTd measurements by clinicians are per-
formed with the presumptive knowledge of a relatively 
constant anatomical dimension for each patient. The 
manual frame choice by the clinician for the repeated 
LVOTd measurements also highlights an important limi-
tation to the current DL approach, which requires opera-
tor input for functionality, thus also inviting a potential 
source of bias.

Limitations of the DL model ‑ pixel to metric conversion
Rescaling of echocardiographic data into image resolu-
tions suitable for DL implementation reduces the details 
in the images and constrains the smallest unit of accuracy 
according to the resolution. Since the LVOTd measure-
ments in the dataset were acquired at different levels of 
zoom, a single pixel unit corresponds to a different met-
ric unit for different measurements and patient examina-
tions. This information is not conveyed to the DL model, 
which results in different Bland-Altman plots and cor-
relation plots when using pixel units compared to met-
ric units. Complementary data and  plots in pixel units 
are provided in the supplement (Supplemental Table 5), 
which show less trends  in the Bland-Altman plot (Sup-
plemental Figure  1), and a higher Pearson coefficient 
(Supplemental Figure 2) in comparison the metric plots. 
The conversion of pixel units to metric units could also 
explain the superior DL performance on ZPLAX views 
compared to PLAX views since each pixel unit error cor-
responds to a smaller metric unit error.

Limitations of the DL model ‑ mean pointwise ED
It should be remarked that the mean pointwise ED, 
used to evaluate the predicted LVOTd coordinates dur-
ing DL model training, is not necessarily correlated with 
the LVOTd dimension. The LVOTd dimension is only 
dependent on the relative distance between the supe-
rior and inferior LVOTd coordinates and not their abso-
lute placement in the echocardiographic still frame. 
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For instance, the near parallel structure of the LVOT in 
the PLAX view can give similar LVOTd dimensions for 
LVOTd coordinates placed at multiple levels of inter-
section. In contrast, the mean pointwise ED would be 
high even if the predicted LVOTd dimension was cor-
rect, if the intersection of the predicted LVOTd coordi-
nates was far from ground truth LVOTd coordinates. The 
LVOTd results are therefore not a direct reflection of the 
DL model performance, which would be more correctly 
assessed with results from the mean pointwise ED in pix-
els provided in the supplement (Supplemental Table 6).

Limitations of the examination scan‑rescan variability
The examination scan-rescan variability in the current 
study differs from the traditional approach due repeated 
measurements being performed during the same exami-
nation and patients having a non-uniform number of 
repeat measurements. Since repeated measurements 
were acquired from a single echocardiographic exami-
nation, the variability is expected to be lower than tradi-
tional scan-rescan variability. The use of the two LVOTd 
measurements with the largest clinical difference for 
patients exceeding two repeated measurements, was to 
adjust for possible difficulties during examination which 
could have motivated performance of additional meas-
urements. However, it is important to highlight that the 
DL model does not necessarily struggle with the same 
echocardiographic still frames as the clinicians and is an 
important limitation. Additional evaluations of exami-
nation scan-rescan variability for patients with exactly 
3 repeated LVOTd measurements are provided in the 
supplement (Supplemental Figure 3 and Table 7), which 
show poorer precision for the DL model compared to 
clinicians.

Limitations of the quality labels
Assessment of data quality is challenging as it is always 
defined relative to the overall dataset. Furthermore, qual-
ity labelling was done by a single expert cardiologist with-
out any predefined objective criteria. The quality labels 
do however show some agreement with the general con-
sensus, as an increase in precision was observed for the 
clinicians when removing “Low” quality data. The sup-
plement provides detailed results on the effects of data 
quality on DL predictions on the test set (Supplemental 
Figure 4 and Table 8).

Limitations of the dataset
The limitations of the dataset must be considered when 
assessing the generalizability of the results. Despite the 
inclusion of over a thousand LVOTd measurements, the 

presence of repeated measurements makes the dataset 
significantly more homogeneous due to overlap in ana-
tomical features. Even though specific patient diagnoses 
were not available upon data acquisition, the consecutive 
inclusion protocol does suggest some diversity regard-
ing patient diagnoses. However, since included patients 
were from a high-income country, conditions like rheu-
matic heart disease were likely to not be represented in 
the dataset. Underrepresentation of data can also be 
assumed for healthy controls as the dataset was sourced 
from echocardiograms performed at a cardiac catheteri-
zation laboratory. Furthermore, none of the included 
patients were observed to have prosthetic aortic valves 
which present significant morphological differences dur-
ing echocardiography. Ultrasound devices from only one 
vendor were used in the dataset, which can also bias the 
DL model toward a certain type of signal processing. 
The lack of external validation with independent LVOTd 
datasets is therefore the most important limitation for 
the findings in this study.

Conclusion
This study has presented an automatic DL approach for 
measuring LVOTd in PLAX and ZPLAX views in 2D 
transthoracic echocardiography using a high-quality 
clinical dataset. Experimental results showed that DL 
predicted LVOTd were within the lower range of clinical 
inter-observer variability and had comparable precision 
to clinicians, demonstrating its feasibility and potential 
for clinical utility. While the DL method presents ben-
efits such as efficiency and improved reproducibility, the 
limitations of this study and the susceptibility to outli-
ers, are still issues that must be addressed before clinical 
utilization.

Prospects for future research on the topic includes 
the use of larger and more diverse datasets, in terms of 
patient population and ultrasound devices, for both DL 
model training and external validation. Furthermore, 
methods of imbuing more contextual information to 
the DL model, such as temporospatial features through 
addition of consecutive echocardiographic frames and 
anatomical constraints, could be explored in future stud-
ies to reduce the occurrence of anatomically implausible 
predictions.

Abbreviations
LVOTd  Left ventricular outflow tract diameter
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ED  Euclidean distance
CI  Confidence interval
IQR  Interquartile range
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