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parameters into multiparametric model for
ischemia detection is not superior to visual
assessment during dobutamine stress
echocardiography
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Abstract

Background: To evaluate if the combination of several quantitative parameters into a mathematical model would
enhance the detection of myocardial ischemia during dobutamine stress echocardiography (DSE) when compared to
conventional wall motion analysis.

Methods: In a prospective study design 151 patients (age 61.8 + 9.2) in test group and 105 patients (age 64.0 + 10.6)
in validation group were selected and underwent DSE between January 2008 and December 2012. In all patients
coronary angiography was performed within 6-8 weeks from DSE, considering at least one stenosis 250 % per patient
as significant coronary artery disease (CAD). Results of DSE visual assessment and myocardial velocity, strain and strain
rate parameters derived from speckle tracking imaging were imported automatically to an originally created software.
A mathematical model calculating prognosis of at least one stenosis per patient and stenosis in separate arteries was
constructed.

Results: Myocardial ischemia was visually detected in 60 (39.7 %) and in 58 (54.2 %) patients of the test and validation
group, respectively. A total of 76 (50.3 %) patients in the test group and 69 patients (65.7 %) in the validation group
had =50 % coronary stenosis. Sensitivity and specificity of the mathematical model per patient in the test group were
91.6 % and 86.3 % compared to 76.8 % and 89.0 % of the visual assessment, respectively. However, in the validation
group the sensitivity, specificity, positive predictive value and negative predictive value dropped down significantly
becoming lower to visual assessment.

Conclusions: Myocardial deformation imaging may potentially replace visual assessment with an automated predictive
model for stress-induced ischemia detection. However, a multiparametric mathematical model based on quantitative
deformation markers did not demonstrate incremental value to visual assessment of wall motion.

Keywords: Coronary artery disease, Dobutamine stress echocardiography, Speckle tracking, Myocardial deformation
imaging, Machine learning
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Background

Several studies have proposed a number of quantitative
parameters vs. visual assessment for ischemia detection
during dobutamine stress echocardiography (DSE) [1-7].
However, most of these quantitative tools have remained
in the research laboratory and are not implemented in
the routine clinical practice. In a previous report we
tried to identify a single powerful quantitative parameter
for the prediction of coronary stenosis studying multiple
velocity and deformation parameters during DSE but we
could not demonstrate that such an approach was better
than expert visual wall motion reading [8]. Several previ-
ous reports were consistent with our findings showing
that visual assessment was equally accurate as quantita-
tive assessment. However, the main limitation of stress
echocardiography is related to operator’s experience and
a more objective and quantitative approach is needed.
The purpose of this study was to evaluate if the combin-
ation of several quantitative parameters into a mathem-
atical model would enhance the detection of myocardial
ischemia during DSE. The study hypothesis is that a
multiparametric approach would provide a sound and
effective diagnostic tool.

Methods

One hundred fifty-one prospectively enrolled consecu-
tive patients in the test group underwent DSE between
January 2008 and December 2010 and 105 patients in
the validation group underwent DSE between January
2011 and December 2012. Decision for DSE indication
was made by consulting cardiologists not involved in the
research project, in the course of routine diagnostic
workup. DSE was performed for recurrent symptoms in
patients with known coronary artery disease (CAD) (n =
35 in the test group and n = 40 in the validation group)
or suspected CAD (n = 116 and n = 65, respectively). Pa-
tients were included in the study if coronary angiography
was performed within 6-8 weeks after DSE. Exclusion cri-
teria were: previous myocardial infarction, previous cardiac
surgery, non-sinus rhythm, significant valvular disease, left
ventricular hypertrophy [9-11], atrial or ventricular ar-
rhythmias, bundle branch block or reduced left ventricular
(LV) ejection fraction (EF) <50 %. Beta-blocking medica-
tions were discontinued 48 hours, nitrates and other anti-
anginal medications — 24 hours prior to the DSE in all
patients. Stress echocardiography was performed on med-
ical therapy in 94 (62 %) patients in the test group and 82
(78 %) in the validation group (calcium-antagonists in 56
and 41, or nitrates in 38 and 21, respectively) and off
therapy in 57 (38 %) and 23 (22 %) patients. Informed
consent was obtained from all patients before testing, and
the study protocol was approved by the Vilnius regional
Bioethics committee (Approval No.158200-11-254-58).
Stress echo data were collected and analysed by stress
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echocardiographers not involved in patient care. Hyper-
tension and hypercholesterolemia were defined according
to standard definitions [9, 11].

Dobutamine echocardiography and visual assessment
Each study patient underwent a standard DSE protocol
with incremental dobutamine infusion rates 5, 10, 20,
30, and 40 pg/kg/min for 3 minutes each stage under
continuous ECG, blood pressure (BP), and echocardio-
graphic monitoring. When no end point was reached,
atropine (up to a maximum of 1 mg) was added to the
continuing 40 pg/kg/min dobutamine infusion. Non-
echocardiographic diagnostic end-points were the fol-
lowing: peak atropine dose; 85 % of target heart rate;
development or deterioration of wall-motion abnormal-
ities, severe chest pain and/or diagnostic ST segment
changes. The test was also stopped for one of the fol-
lowing reasons: intolerable symptoms, systolic blood
pressure increase to >220 mmHg or hypotension, se-
vere arrhythmias.

Transthoracic stress echocardiographic studies were per-
formed with commercially available ultrasound machine
(System Vivid 7, GE Healthcare, Horten, Norway) with 1,5
— 4,6 MHz transducer. The long and short axis of the LV
from parasternal window, 4- and 2-chamber views from
apical window were acquired for comparison in four stages
of stress test. Regional wall motion was assessed according
to the recommendations of the European Association of
Echocardiography dividing LV into 16 myocardial
segments. In all studies, segmental wall motion was
semiquantitatively graded as follows: normal = 1;
hypokinetic, marked reduction of endocardial motion
and thickening = 2; akinetic, virtual absence of inward
motion and thickening = 3; and dyskinetic, paradoxic
wall motion away from the center of the left ventricle
in systole = 4. It was considered that in some cases of
normal variant basal inferior and basal inferoseptal
segments could be scored as hypokinetic. The sum of
all segment scores divided by the number of interpret-
able segments made WMSI. Test positivity was defined as
the occurrence of at least one of the following conditions:
1) new dyssynergy in a region with normal resting func-
tion (i.e., normokinesis becoming hypo, aki or dyskinetic);
2) worsening of a resting dyssynergy (i.e., a hypokinesia
becoming aki or dyskinesia).

Speckle tracking myocardial imaging

Speckle tracking images (STI) were recorded at baseline
and peak dobutamine levels with breath-holding. The
frame rate of stored apical 2 and 4-chamber cine-loops
for speckle tracking analysis was in the range of 70-90
frames/sec. The loops were stored digitally and analysed
off-line using customised software (Echopac PCBTOS,
GE Healthcare). After manual tracing of endocardium
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Table 1 Speckle tracking and visual evaluation parameters

constituting multiparametric model

Variable Segment Cutoff  Unit
Model for at least one stenosis per patient

Maximal strain rest Mid septal -1839 %

A’ velocity rest Mid anterior -1.83 cm/s
Time to maximal strain rest Apical septal 3940 ms
Time to S' velocity stress Apical anterior 780 ms
Time to S' velocity stress Mid anterior 510 ms
Systolic strain rate stress Apical septal -2.37 s
Radial systolic displacement rest  Basal lateral 542 mm
A’ strain rate stress Basal lateral 1.96 s

S’ velocity stress Basal anterior 6.78 cm/s
Systolic strain rest Apical septal -2243 %
Maximal strain rest Basal inferior 2012 %
Visual WMSlgressWMSles:  0.13

Model for LAD

Systolic strain rest Apical septal -1153 %
Systolic positive strain stress Basal inferior 0.27 %
Maximal strain rest Basal inferior -2153 %

S’ velocity stress Basal anterior 841 cm/s
E' velocity stress Basal septal -7.2 cm/s
A’ velocity rest Mid anterior -1.69 cm/s
Visual WMSlgresssWMSles:  0.13

Time to maximal strain rest Apical anterior 3530 ms
Time to S’ velocity stress Mid septal 780 ms
Time to S' velocity stress Apical anterior 120.0 ms
Time to S' velocity stress Mid anterior 59.0 ms
A’ strain rate stress Basal lateral 1.96 s
Systolic strain rate stress Apical septal -2.37 s
Radial systolic strain stress Mid septal 844 %
Model for LCX

A’ strain rate stress Basal lateral 1.70 s

A’ velocity rest Mid anterior -342 cm/s
Systolic strain rest Apical septal -2448 %

S’ velocity rest Apical inferior 350 cm/s
E' velocity stress Basal septal -5.51 cm/s
Radial systolic displacement rest  Basal lateral 733 mm
Systolic strain rate stress Apical septal -2.84 s
Time to maximal strain rest Apical anterior 404.0 ms
Time to S' velocity stress Apical anterior 56.0 ms
Time to S' velocity stress Mid septal 75.0 ms
Radial systolic strain stress Mid septal 41.90 %
Visual WMSlgressWMSles:  0.13
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Table 1 Speckle tracking and visual evaluation parameters
constituting multiparametric model (Continued)

Model for RCA

Maximal strain rest Basal inferior -2012 %
Systolic strain rest Apical septal 224 %
S’ velocity rest Apical inferior 1.38 cm/s
Time to maximal strain rest Apical anterior 390.0 ms
Time to maximal strain rest Apical septal 399.0 ms
Time to maximal strain rest Basal posterior 3970 ms
Time to S’ velocity stress Mid anterior 470 ms
Systolic positive strain stress Basal inferior 048 %
E’ velocity stress Basal septal -2.88 cm/s
Radial systolic displacement rest  Basal lateral 542 mm

Visual WMSlress-WMShor 013

LAD Left ascending artery, LCX Left circumflex artery, RCA Right coronary artery

borders in the end-systolic frame of the 2-D images, the
software automatically tracked myocardial motion, creat-
ing 6 regions of interest in each apical image, with track-
ing quality labelled as verified or unacceptable. In
segments with unacceptable tracking, the observer read-
justed the endocardium trace line until a verified track-
ing was achieved. If this was not attainable, that segment
was excluded from analysis. Graphical displays of de-
formation parameters (reflecting the average value of all
of the acoustic markers in each segment) were then
automatically generated for 6 segments in each view.

Measurement of quantitative parameters

Peak longitudinal systolic (S’), diastolic (E; A’) velocities,
time to peak systolic velocity, peak longitudinal and ra-
dial systolic, post-systolic and maximal strain, peak lon-
gitudinal systolic and diastolic strain rate, radial systolic
displacement at rest and during stress were measured
using automated vendor-suggested software. Maximal
strain coincided with systolic or post-systolic strain which-
ever was found larger. Parameters of 12 myocardial seg-
ments (6 in 4-chamber and 6 in 2-chamber views) were
manually approved and automatically exported to Excel
tables using commercially available software (Echopac
PCBTO08, GE, Healthcare). Post-systolic index (PSI) was
defined by formula PSI = peak post-systolic strain - peak
systolic strain. Speckle tracking parameters were automat-
ically imported to multiparametric model integrated in
local Access DSE database.

Coronary angiography

Coronary angiography was performed in all patients of
both groups referred to DSE within 6—8 weeks after do-
butamine challenge according to the standard Judkins
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technique adopting femoral or radial approach with
Inova2100 (GE Healthcare). Clinical decision to perform
coronary angiography was made independently of the
study by consulting cardiologists, who were aware of
DSE test results for conventional wall motion criteria. At
least five views (including two orthogonal views) were
acquired for the left and at least two orthogonal views
for the right coronary artery, respectively. Additional
appropriate projections were obtained in case of super-
imposition of side branches or foreshortening of the
segment of interest. Coronary angiographic data were
analysed by 2 experts blinded to the clinical data and
the results of DSE. Obstructive CAD was defined as a
quantitatively assessed coronary stenosis > 50 %.

Statistical analysis, multiparametric model construction
and implementation

Study variables are presented as mean values + SD. Inter-
observer agreement was determined by having two inde-
pendent investigators measure representative parameters
using STI and assess WMSI in 15 randomly selected pa-
tients. Intraobserver agreement was determined by having
1 investigator repeat STI measurements and WMSI evalu-
ation in other 15 randomly selected patients 1 month
later, while being blinded to the previous measurements.
Reproducibility is expressed as the mean percentage dif-
ference (value of observer 1 - value of observer 2/mean of
the values of observer 1 and 2).

Construction of the underlying statistical model con-
sisted of two steps. The first step was intended for selection
of predictive visual assessment and speckle tracking vari-
ables. As the amplitude of quantitative covariants depends
on the location of the segment in the left ventricle, analysis
was performed separately for each segment location. The
level of significance was set at 0.05. Simple logistic regres-
sion model was fitted for each of the study variable. If a
parameter was significant it was included into the set of
predictors used in the second step (Table 1). Moreover, for
each significant parameter optimal threshold of classifica-
tion was computed. In the second step all raw values of co-
variants were replaced by new ones as follows. We denoted
optimal logistic regression threshold corresponding to
parameter a and obtained in the first step, whereas S,
Ba: denote the estimated model parameters. For a par-
ticular value x» dependent of parameter a calculated in
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step 1, we defined new rescaled logistic regression
response (step 2).

— Ta
(p (lBOa' —1’__187{0596) ) if (:BOa + /J)lax) > Tu;

Ta-¢ (ﬁOa + /J)lax)
Ty

r(x) =

) if(ﬁOa + /J)ltxx)ST“;

with ¢(y) = ¢”/(1 + €). Now for observation number i
with particular value of a equal to x; put

5= 0, if x;is missing;
! r(x;), if x; is not missing.

Transformation allows use missing values set as zero,
otherwise calculated rescale transformation (positive/
negative) is more informative in logistic regression. Mul-
tiparametric mathematical model construction steps are
shown in Fig. 1.

After replacement the data set did not contain missing
values and included only those covariants which were
selected in the first step. For this full data set stepwise
logistic regression was applied. Hence final model could
be treated as some kind of voting neural network with
unusual fitting method. Described procedure was applied
for prognosis of stenosis in separate arteries: left ascending
artery (LAD), right coronary artery (RCA), left circumflex
artery (LCX) as well as for prognosis of presence of at
least one stenosis per patient. Covariants and cutoff
included in models are shown in Table 1.

“Test group” provided a dataset used for model con-
struction (151 consecutive patients enrolled between
January 2008 and December 2010); “validation group”
yielded an independent dataset used to estimate how accur-
ately the model will perform in practice (105 consecutive
enrolled between January 2011 and December 2012).

To make model convenient for practitioners a software
was incorporated within an existing Access data collection
form. Calculations of sensitivity, specificity and accuracy
were performed according to standard definitions. The 95
% Cls were calculated and the individual intervals were
compared. Differences were considered significant at the
0.05 level when 95 % CI did not overlap.

Stepl: or each parameter i:

significant

Step2: or each parameter j:
including missing data

Step3: Stepwise logistic regression:

Step 3 - application of logistic regression

N

Fig 1 Multiparametric mathematical model construction steps. Step 1 - selections of significant covariants, Step 2 - replacement of missing data,
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Results

Stress echocardiography

Clinical and echocardiographic characteristics of the
study population are reported in Table 2. No major
complications occurred during DSE. The 85 % age-
predicted maximum heart rate was achieved in 137
(90.7 %) and 94 (89.5 %) test and validation group, re-
spectively. Ischemia was visually detected in 60 (39.7 %)
and in 58 (54.2 %) patients of the test and validation
group, respectively.

Feasibility and reproducibility of quantitative data
After exclusion of poorly visualized segments, the stored
data of 1466 (97.1 %) and 1017 (96.9 %) myocardial seg-
ments in the test and validation group, respectively, were
finally analysed. The prevalence of uninterpretable signals
due to inadequate tracking in the segments included in
the final analysis was found to be 2.1 % and 2.5 % at rest
and 5 % and 5.2 % during stress in the test and validation
group, respectively.

The mean percentage differences of inter- and intraob-
server measurements of velocity, strain, strain rate and
WMSI are summarized in Table 3.

Angiographic results

A total of 76 (50.3 %) patients in the test group and 69
patients (65.7 %) in the validation group had =50 %
coronary stenosis, see Table 4.

Table 2 Clinical characteristics of study groups and DSE
hemodynamics

Characteristics Test group Validation group
(n=151) (n=105)

Age, years 61.8+92 64.0 £ 10.6

Male 89 (58.9 %) 66 (62.9 %)

Typical angina 62 (41.1 %) 34 (32.4 %)

Hypertension 141 (934 %) 100 (95.2 %)
Hypercholesterolemia 118 (78.1 %) 73 (69.5 %)
Diabetes 29 (19.2 %) 19 (18.1 %)
Smoking 28 (18.5 %) 31 (29.5 %)
MM, g/m? 994 + 17.1 884 + 199
EF rest, % 545+ 18 535+ 29
EF stress, % 599 + 6.6 60.2 + 6.0
HR rest, beats per min 699 £ 11.1 704 £ 118
HR stress, beats per min 1324+ 109 130.2 + 14.2

77 (51.0 %)
87 (57.6 %)
1.02 + 0.04

38 (36.2 %)
57 (543 %)

ECG changes during stress
Chest pain during stress

WMSI rest 1.05 +0.10
WMSI stress 1.18 £0.20

MMI Myocardial mass index, EF Ejection fraction, HR Heart rate, BP Blood
pressure, ECG Electrocardiogram, WMS/ Wall motion score index

121+ 023
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Table 3 Reproducibility of visual and quantitative methods
(mean percentage difference)

Visual
WMSI
Rest  Stress Rest  Stress Rest
Interobserver 0.031 0035 0029 0031 0075 0077
Intraobserver 0017 0.028 0026 0.037 0097 0.109

Speckle tracking imaging

Velocities Strain Strain rate

Stress Rest  Stress
0.007 0.009

0010 0016

WMSI Wall motion score index

Diagnostic accuracy of multiparametric model and visual
wall motion analysis

Diagnostic performance of models created per patient
and per vessel in the test group appeared to be superior
to visual assessment (Table 5, Figs. 2, 3, 4 and 5). Sensi-
tivity and specificity of the model per patient in the test
group were 91.6 % and 86.3 % compared to 76.8 % and
89.0 % of visual assessment, respectively. However, when
we applied the same models in the new validation group,
sensitivity, specificity, positive predictive value and negative
predictive value were significantly reduced and became
lower to visual evaluation (Table 5, Figs. 2, 3, 4 and 5).

Discussion

This study represents further consecutive step in attempts
to implement quantitative tools in the detection of myo-
cardial ischemia during stress echocardiography. It is
based on the number of previous investigations showing
the significant links of several myocardial motion and de-
formation markers with induced ischemia [1-8, 12—15].

However, in the vast majority of publications the diag-
nostic accuracy of the quantitative markers is demon-
strated to be lower or only comparable to the visual
assessment of stress echocardiography [1, 2, 8, 12—14].
Current lack of evidence on effective application of
quantitative methods in routine practice is reflected in
recommendation documents and consensus statement
of EAE and ASE [3, 15, 16].

Prior research [1, 4—8] was mostly focused on single
parameters, segment-specific or averaged for all myocar-
dial segments that carry only fragmental information of
regionally impaired myocardial mechanics. Therefore,

Table 4 Extent of CAD in test and validation groups
Test group (N = 151)

Validation group (N = 105)

No stenosis 75 (49.7 %) 36 (34.3 %)
1 vessel 32 (21.2 %) 25 (23.8 %)
2 vessels 23 (15.2 %) 22 (20.95 %)
3 vessels 21 (13.9 %) 22 (20.95 %)
>50 % stenosis 20 (13.2 %) 15 (14.3 %)
>70 % stenosis 21 (13.9 %) 22 (21.0 %)
>90 % stenosis 35 (23.2 %) 32 (30.5 %)
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Table 5 Performance of multiparametric model and visual wall motion analysis in the test and validation groups

Group Sensitivity, % (95 % Cl)  Specificity, % (95 % Cl)  Positive predictive  Negative predictive
value, % (95 % Cl)  value, % (95 % Cl)
Visual wall motion analysis Test 76.8 (65.6; 85.2) 89.0 (804; 94.1) 85.5 (74.7;92.2) 82.0 (72.8; 836)
Validation  75.8 (64.2; 84.5) 744 (589; 854) 83.3(71.9;90.7) 644 (49.8; 76.7)
Model for at least one stenosis for patient — Test 91.6 (82.8; 96.1) 86.3 (77.0; 92.2) 85.5 (75.9; 91.7) 92.0 (83.6; 96.3)
Validation ~ 66.7 (55.9; 76.7) 778 (61.9,883) 85.2 (734; 92.3) 549 (414; 67.7)
LAD model Test 90.6 (79.8; 95.9) 929 (86.0; 96.5) 87.3 (76.0; 93.7) 94.8 (884; 97.8)
Validation 404 (28.2; 53.9) 66.0 (52.6; 77.3) 53.9 (385; 684) 53.0 (41.2; 64.6)
LCX model Test 85.6 (70.6; 93.7) 94.0 (88.1; 97.1) 81.0 (65.8; 90.5) 95.6 (90.1; 98.1)
Validation ~ 20.5 (10.8; 35.5) 87.8(77.9;93.7) 50.0 (280;72.0) 65.2 (54.8; 74.3)
RCA model Test 854 (72.8;92.7) 92.2 (85.4; 96.0) 83.7 (71.0; 91.5) 93.1 (86.5; 96.6)
Validation ~ 45.5 (31.7,59.9) 78.7 (66.9; 87.1) 60.6 (43.7; 75.3) 66.7 (55.2; 76.5)

LAD Left ascending artery, LCX Left circumflex artery, RCA Right coronary artery,

we hypothesized that a multiparametric model, including
a substantial list of informative quantitative parameters,
would demonstrate better performance than separate
markers alone or visual DSE assessment.

Theoretically, such mathematical model could better re-
flect the complicated nature of the biological phenomenon
of regional ischemia and incorporate relevant inter-
dependencies between physiologically different parame-
ters. The feasibility was considered as one of the main
requirements to the quantitative tool for routine clinical
practice, therefore automatically obtainable data of speckle
tracking were chosen for model creation.

In parallel with previous studies the set of predictive
markers included blunted response of systolic velocity,

Cl Confidence interval

prolonged time to peak systolic velocity [1, 12, 14], de-
creased E’ wave velocity [4, 5, 17], longitudinal and radial
systolic, post-systolic and maximal strain, post-systolic
index [6, 7, 13], systolic and diastolic longitudinal and ra-
dial strain rate, radial systolic displacement. In this study
we followed the methodology of defining thresholds separ-
ately for each evaluated myocardial segment, taking into
account known base-to-apex and wall-to-wall differences
of myocardial velocity and strain/strain rate [10, 18, 19].
Model user should only approve peak velocity, strain,
strain rate and displacement values in the commercially
available 2D strain analysis software and then export data
set through Excel tables to the constructed system. Ori-
ginally created classifier was incorporated in daily used
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Fig. 3 Diagnostic performance of LAD model. The sensitivity (blue line), specificity (red line), positive predictive value (brown line) and negative
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Access database of DSE. Visual assessment data were
eligible for automatic import, and changes in scores of
selected segments entered the model, too. Of note, the
lower sensitivity of visual assessment in the present and
some previous reports [14] reflects the limitations of
subjective interpretation of regional wall motion and
justifies the search of quantitative tools.

The constructed mathematical analysis tool represents
a kind of machine learning methodology, namely a type
of neural network with unusual fitting method. Machine
learning technology is currently well suited for analysing
medical data, and in particular there is a lot of work
done in medical diagnosis in small specialized diagnostic
problems [20-22]. This system provides a possibility to
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Fig. 4 Diagnostic performance of LCX model. The sensitivity (blue line), specificity (red line), positive predictive value (brown line) and negative
predictive value (light blue line) curves are depicted in the test (Part 1) and validation (Part 2) groups
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RCA test (N=151)
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Fig. 5 Diagnostic performance of RCA model. The sensitivity (blue line), specificity (red line), positive predictive value (brown line) and negative
predictive value (light blue line) curves are depicted in the test (Part 1) and validation (Part 2) groups
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handle an unusually large amount of data in a relatively
short period of time. The created classifier automatically
made the prognosis of significant coronary stenosis, and
in the test group it demonstrated promising results.
However, the attempt to validate the model in the simi-
lar population of consecutive patients gave disappointing
results.

Failure of model validation recalls the shortcomings of
single quantitative markers, having rather modest predict-
ive ability of significant coronary stenosis (AUCs 0.60-
0.72) [8, 14]. Limited value of distinguished indices could
be largely attributed to known technical challenges of
quantitative imaging: potentially inadequate spatial and
temporal resolution, higher speckle decorrelation between
subsequent frames at higher heart rates, noise and arte-
facts [23]. Similar to our findings, considerable inter- and
intra-observer variability of 7-12 % is reported for speckle
tracking technology [8, 24-26]. Possibly, mutual inter-
action of ischemic and non-ischemic segments and load-
dependency of deformation parameters may diminish the
differences between markers of these two groups [26, 27].
Furthermore, previously demonstrated significant hetero-
geneity of left ventricular wall thickening during dobuta-
mine stress even in the absence of CAD may contribute to
insufficient accuracy of created model [28].

Study limitations

In this study coronary angiography was used as the ref-
erence method. However, relationship between stenosis
severity and physiological reduction of coronary flow is
quite variable. Angiographic coronary stenosis does not

always reflect the potential alteration in the regional
myocardial perfusion.

Acquisition of quantitative parameters was based on
the commercially available software, therefore relying on
implemented methods of noise and artefacts handling.
Creating a multiparametric mathematical model, the main
challenges remain related to identifying the best method-
ology for data transformation and critical clinical data.
Finally, there is need to understand how to deal with
missing data. The study model was constructed on a
relatively small data base with possible over fitting.

Conclusions

Myocardial deformation imaging provides potential for
creation of automated predictive model for stress-induced
ischemia detection. However, a multiparametric mathem-
atical model based on quantitative deformation markers
did not demonstrate incremental value to visual assess-
ment of wall motion.
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