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Abstract

Background: Patients with non-ischemic heart failure etiology and left bundle branch block (LBBB) show better
response to cardiac resynchronization therapy (CRT). While these patients have the most pronounced left
ventricular (LV) dyssynchrony, LV dyssynchrony assessment often fails to predict outcome. We hypothesized that
patients with favorable outcome from CRT can be identified by a characteristic strain distribution pattern.

Methods: From 313 patients who underwent CRT between 2003 and 2006, we identified 10 patients who were
CRT non-responders (no LV end-systolic volume [LVESV] reduction) with non-ischemic cardiomyopathy and LBBB
and compared with randomly selected CRT responders (n = 10; LVESV reduction 215 %). Longitudinal strain (gong)
data were obtained by speckle tracking echocardiography before and after (9 +5 months) CRT implantation and
standardized segmental gong-time curves were obtained by averaging individual patients.

Results: In responders, ejection fraction (EF) increased from 25+ 9 to 40+ 11 % (p = 0.002), while in non-
responders, EF was unchanged (208 to 21 £5 %, p =0.57). Global g4, Was significantly lower in non-responders
at pre CRT (p=0.02) and only improved in responders (p = 0.04) after CRT. Pre CRT septal €ong -time curves in both
groups showed early septal contraction with mid-systolic decrease, while lateral g4 showed early stretch followed
by vigorous mid to late contraction. Restoration of contraction synchrony was observed in both groups, though
non-responder remained low amplitude of g4nq.

Conclusions: CRT non-responders with LBBB and non-ischemic etiology showed a similar improvement of g4nq
pattern with responders after CRT implantation, while amplitude of gq remained unchanged. Lower g in the
non-responders may account for their poor response to CRT.
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Background

Cardiac resynchronization therapy (CRT) improves sur-
vival by stopping or reversing adverse remodeling that
occurs in systolic heart failure [1-3]. The mechanism
of CRT is coordination of the contraction pattern of
otherwise dyssynchronous opposing left ventricular
(LV) walls which are, in a clinically common setting of
left bundle branch block (LBBB), septal and lateral ones
(4, 5].

While several clinical parameters have been well
established as predictors of CRT response [1, 3, 6],
failure of CRT occurs even if all of clinical parame-
ters predict otherwise. It is unclear if this is due to a
specific contraction pattern of these patients, or some
other factors. For this purpose we analyzed the con-
traction pattern of CRT patients with clinical and
procedural characteristics known to be associated
with pronounced reverse remodeling response: non-
ischemic heart failure etiology, LBBB pattern on elec-
trocardiogram (ECG), QRS duration on ECG
>140 ms, and LV electrode located over the mid/base
lateral or posterolateral wall [1, 3, 6, 7]. We identified
a group of patients who, despite these favorable pre-
procedural characteristics, did not show reverse re-
modeling, and compared it to a group with good
CRT response using segmental strain analysis.

Methods

Population

The study population was selected from 313 consecu-
tive heart failure patients who underwent implant-
ation of a biventricular device at the Cleveland Clinic
between January 2003 and June 2006, who also had
long-term echocardiographic follow-up [3] (Fig. 1).
They all had symptomatic heart failure, an ejection
fraction of <35 % and QRS duration of >120 ms.
CRT was provided in the standard fashion with 3
trans-venous leads, including the LV lead inserted
through the coronary sinus.

From those who had a complete baseline echocar-
diographic study performed within 3 months before
device implantation on a Vivid 7 system (GE Health-
care, Horten, Norway) and with echocardiographic
follow-up (>3 months), we identified 10 patients who
were CRT non-responders (unchanged or increased
LV end-systolic volume [LVESV] at follow-up) with
the following clinical characteristics: non-ischemic
cardiomyopathy, LBBB, and LV lead placed over the
base/mid posterior or lateral LV wall. We compared
this group with a group of ten patients with the same
characteristics except for being CRT responders (re-
duction of LVESV at follow-up >15 %) who were ran-
domly selected from the same study population. The
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CRT Patients
n=2313

Ischemic Etiology
n =165

Non LBBB pattern
n =32

Anterior LV lead
n=6

Non-ischemic Etiology
LBB pattern
Posterior/lateral LV lead
n=110

<15% LV ESV decrease
n=20

215% LV ESV decrease
n=72

No LV ESV decrease
n=18

Pre and post CRT study
adequate
for strain assessment
n =38

Pre and post CRT study
on Vivid 7 echo machine
n=10

Randomly selected
n=10

Fig 1 Flow diagram of patient selection process. CRT, cardiac
resynchronization therapy; LBBB, left bundle branch block; LV, left

ventricular; LVESV, left ventricular end-systolic volume
- J

patient data were de-identified and that the study was
approved by the Cleveland Clinic Institutional Review
Board.

Longitudinal strain-time analysis

Two-dimensional speckle tracking (EchoPAC 10.0, GE
Healthcare) was performed using the images acquired in
the apical 4 chamber, 2 chamber and long axis views. The
peak of the R wave on the ECG was used as a reference
time point for end-diastole, and aortic valve closure was
used as a time point for end-systole. Segmental longitu-
dinal strain (gj,ng) curves derived from a single cardiac
cycle were exported for analysis, with resulting 18 g,
curves corresponding to the basal-mid-apical septum,
anteroseptum, inferior, posterior, lateral and anterior seg-
ments obtained in each patient. To correct for RR interval
variation, go,s curves were normalized using the two ref-
erence time points of end-diastole and end-systole, so that
time was expressed as a percentage of systole (% systole)
[8, 9]. Care was taken to ensure that the end-diastolic time
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points for speckle tracking are consistent across all three
apical views.

To better characterize segmental gy, profiles in both
patient groups pre and post CRT, individual ;o5 curves
were averaged to obtain a characteristic average égjong
profile [8, 9]. Figure 2 shows individual g,y curves of
the basal anterolateral segment (A), and corresponding
group average €p,; curve (B) obtained in CRT re-
sponders before pacing. Finally, global g,,, was calcu-
lated by averaging segmental values.

Statistical analysis
Continuous variables with normal distribution were
expressed as mean+SD, and categorical variables
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Fig 2 Individual (a) and averaged (b) strain-time curve of basal lateral
segment in the responders prior to cardiac resynchronization therapy.
a Individual segmental strain-time curves, normalized for systolic
duration, obtained from basal lateral segment in the responders group
prior to start of cardiac resynchronization therapy. Systolic duration is
defined as the time from the mitral valve closure to aortic valve
closure. b Averaged normalized segmental strain-time curve (with error
bars indicating standard error) obtained by averaging the data shown
in Panel a. Arrows depict the time points corresponding to mid systole
(50 %), end-systole (100 %) and post-systole (125 %). CRT, cardiac
resynchronization therapy
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were expressed as count and percentage. Between
and within-group differences were assessed by Wil-
coxon signed-rank test and Mann-Whitney U test as
appropriate. To assess opposing wall mechanics be-
fore and after CRT, we entered €, measurements
from basal and mid LV levels of the opposing walls
(e.g., septal and lateral) obtained at early systole
(50 % of systole duration), end-systole (100 % of
systole duration) and post-systole (125 % of systole
duration) into mixed model analysis, using an un-
structured covariance model. The model was con-
structed with “time” (% systole) as covariate, and
“wall” (e.g., septum vs. lateral) and “group” (re-
sponders vs. non-responders) as factors. Interaction
between time and wall, which quantitates between-
wall difference in pattern of gp,, development, was
taken to represent loss of coordinated contraction
(dyssynchrony). The Akaike criterion was used to de-
termine the optimal model. P values <0.05 were con-
sidered as statistically significant. Statistical analyses
were performed using JMP Pro 10.0.2 (SAS Institute
Inc., Cary, North Carolina).

Results

Of the 313 consecutive patients who underwent CRT
and follow-up, 155 (50 %) had reverse remodeling and
89 (28 %) patients had no response to CRT. Of those 89
patients, 10 (11 %) patients met the inclusion criteria.
Among patients who responded to CRT, 38 patients met
the inclusion criteria and 10 patients were randomly se-
lected as the comparison group. The baseline clinical,
electrocardiographic, and echocardiographic characteris-
tics were similar between responders and non-
responders (Table 1). One non-responder patient was
excluded from the analysis because of poor images at
baseline. The mean age of the population was 58 +
8 years, with 89 % having New York Heart Association
(NYHA) class III/IV symptoms. All patients had sinus
rhythm and left bundle branch block with a QRS dur-
ation of 168 + 20 ms. All implanted devices were biven-
tricular implantable cardioverter defibrillators (CRT-D),
with left ventricular lead position in the lateral (n=12)
and posterolateral (n=7) cardiac veins. There was no
difference between these two groups.

Baseline left ventricular volumes and ejection frac-
tion were not different between responders and non-
responders (Table 2). At follow-up after an average
CRT duration of 9+5 months, responders showed
improvement of LV end-diastolic volume (LVEDV) (p =
0.01), LVESV (p =0.002), and EF (p =0.002), while non-
responders showed significant enlargement of LVEDV
(p=0.004) and LVESV (p =0.01). Although there was
no difference in LV volumes or ejection fractions be-
tween the two groups before CRT, LVEDV (p =0.008)
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Table 1 Clinical data in two patient groups

Responders  Non- P

responders  value
n 10 9
Age (years) 57+11 60+6 0.496
Female Gender, n (%) 5 (50 %) 4 (44 %) 0.809
Weight (kg) 87+18 91+19 0.669
BSA (m?) 20£03 21£03 0632
LBBB, n (%) 10 (100 %) 9 (100 %) NA
Non-ischemic etiology, n (%) 10 (100 %) 9 (100 %) NA
Sinus rhythm, n (%) 10 (100 %) 9 (100 %) NA
CRT-D, n (%) 10 (100 %) 9 (100 %) NA
Follow up from implant (months) ~ 85+4.8 90+52 0.832
NYHA HlI/IV = pre, n (%) 8 (80 %) 9 (100 %) 0.776
NYHA llI/IV = post, n (%) 2 (20 %) 5 (55 %) 0.109
QRS width (ms) - pre 167 +18 169+22 0.789
QRS width (ms) — post 153+18 157 +26 0.771

Values are mean + SD or n (%). BSA body surface area, LBBB left bundle branch
block, CRT-D cardiac resynchronization therapy defibrillator, NYHA New York
Heart Association

and LVESV (p =0.002) were significantly smaller, and
EF (p=0.002) was higher in responders after CRT
implantation.

Global gong

Table 3 outlines the global g,y values in responders
and non-responders at mid-systole (50 % systole),
end-systole (100 % systole) and early post-systole
(125 % systole). Before CRT, global g,,, at end-
systole (»p=0.02) and early post-systole (p=0.03)
were lower in the non-responder group. At a follow
up, in addition to end-systole and early post-systole

Elongs Non-responders showed lower global mid-

Table 2 Left ventricular volumes and ejection fraction pre- and
post-cardiac resynchronization therapy

Responders Non-responders p-value
Pre
LVEDV (ml) 241 £81 310+ 111 0.11
LVESV (ml) 184+ 74 248 £109 0.13
LVEF (%) 25+9 21+8 037
Post
LVEDV (ml) 180 £ 85%* 341 £118* 0.008
LVESV (ml) 111 £63% 274 £113* 0.002
LVEF (%) 40+ 11* 215 0.002

*: p < 0.05 versus pre; **: p <0.01 versus pre
LVEDV left ventricular end-diastolic volume, LVESV left ventricular end-systolic
volume, LVEF left ventricular ejection fraction
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systole gjong (p=0.03) In responders, global end-
systolic (p=0.04) and early post-systolic €ng (p =
0.03) demonstrated improvement after CRT implant-
ation, whereas there were no significant improve-
ment in non-responders.

Opposing walls mechanics before and after CRT
Figure 3 showed averaged gjon-time curves of 18 seg-
ments in responder and non-responder. Each panel
showed pre- and post-CRT septal and lateral wall g;,,s-
time curves of basal, mid, and apical segment for re-
sponders and non-responders. Pre- CRT, the basal and
mid septal g;,,4-time curves demonstrated a pattern of
early septal contraction with mid-systolic decrease, while
basal and mid lateral gj,,,-time curves demonstrated an
early stretch followed by vigorous mid to late contrac-
tion. Post-CRT, restoration of contraction synchrony was
noted in both the septal and lateral segments. This pat-
tern pre- and post-CRT was to a lesser extent observed
in the posterior and anteroseptal walls respectively
(Fig. 4) and was lost in the inferior and anterior walls
(Fig. 5). While the shapes of the gp,,,-time curves were
similar in responders and non-responders, these two
groups differed markedly in amplitude, both pre- and
post-CRT.

To quantify these observations, we compared €, Of
the opposing walls at mid, end, and post-systole (i.e.,
50 %, 100 % and 125 % of systole).

Septal vs. lateral

Prior to CRT, gons was lower in the lateral than in the
septal wall (p =0.001). Septal and lateral walls were also
different in the pattern of g, increase (p=0.001;
Fig. 6a). There was no difference between responders
and non-responders in overall g, the pattern of g,
increase, or in the difference between ¢, of opposing
walls (p=NS for all). After CRT, lateral wall g,,, was
still higher (p =0.007), but difference in the pattern of
€long increase disappeared (p = 0.80). Responders showed
higher overall g4, (p = 0.02), and more marked gy, in-
crease over time (p = 0.03).

Posterior vs. anteroseptal

Posterior and anteroseptal walls prior to CRT showed
different patterns of €., increase (p = 0.01), but similar
average €jong (p = 0.20) (Fig. 6b). Interestingly, responders
had higher overall g, of these two walls (p=0.02).
After 12 months of CRT, difference in the pattern of
Elong iNcrease in opposing walls disappeared (p =0.70).
Responders showed a trend towards having higher over-
all gjong (p = 0.08).
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Table 3 Comparison of longitudinal global strain (gjong) in
responders and non-responders at mid-systole (50 % systole),
end-systole (100 % systole) and early post-systole

(125 % systole)

Responders Non-responders
% systole 50 % 100% 125%  50% 100 % 125 %
Pre -1.68 -5.97 -6.11 -047 -291 -348
+078 £273 +3.05 +046 +096t  +£1.58F
Post -249 -9.94 927 -0.17 -3.69 439+
+09 +3.11%  £408% +058t +247% 3221

*1 p <0.05 versus pre; t: p < 0.05 versus Responders; $: p < 0.001
versus Responders
€1ong, longitudinal global strain

Inferior vs. anterior

Inferior and anterior walls before CRT had similar
patterns of g, increase (p=NS) (Fig. 6c). Re-
sponders and non-responders did not differ in the
overall g, the pattern of g, increase, or in the
difference between opposing wall g, (» = NS for all).
After 12 months of CRT, responders showed higher

Page 5 of 10

overall g, (p=0.02), again with no difference be-
tween g, of opposing walls (p = NS).

Predicting CRT response with baseline Global &4

In the logistic regression model, the pre CRT average
€long Was significantly associated with CRT response.
The area under the receiver operating characteristic
curve showed average €, at end systole -4.0 % as opti-
mal cutoff point (AUC 0.83, 95 % CI 0.64 — 1.00, p =
0.014). This cutoff point predicted CRT response with
78 % specificity and 80 % sensitivity in this population.
Other echocardiographic parameters and baseline char-
acteristics did not predict response.

Discussion

In this paper, CRT non-responders despite having favor-
able predictors of good response to CRT (ie., non-
ischemic heart failure etiology, LBBB, QRS complex dur-
ation >140 ms, and appropriate LV electrode placement)
have lower global end systolic longitudinal strain but a
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similar pattern of longitudinal strain contraction hetero-
geneity pre-CRT as responders. This indicates that the
presence of, and subsequent improvement of, dyssyn-
chrony is not sufficient to result in reverse remodeling
during CRT. Their markedly lower longitudinal strain
suggested myocardial dysfunction burden might be the
predictor of reverse remodeling in patients with non-
ischemic cardiomyopathy.

Ventricular function in left bundle branch block:
characteristic contraction pattern versus dyssynchrony
Animal models have demonstrated that right ventricular
pacing (an LBBB surrogate) induces a characteristic pat-
tern of blunted early septal and forceful delayed lateral
wall contraction preceded by its early stretch [4, 5, 10].
Traditional dyssynchrony indices are positive scalar
numbers that lack the ability to localize the origin of
dyssynchrony. As an example, the standard deviation of
the time to peak of systolic myocardial tissue velocities
[11] will have the same value whether the most delayed
segment is in the basal lateral or apical septal LV segment.

Some clinical studies have shown that early segmental
stretch can be detected in some CRT candidates [12, 13].
In this study, we constructed average segmental strain-
time curves from two well-defined patient groups, a char-
acteristic pattern of early, suppressed contraction of the
basal and mid septum, and early stretch followed by
strong contraction of the basal and mid lateral walls.
These characteristic segmental strain-time curves over-
come the major drawback of LV dyssynchrony indices
[13-18] in defining the characteristic profile of LBBB in-
duced dyssynchrony.

The improvement of LV contraction heterogeneity un-
derlies some of the benefits of CRT. Unfortunately, pro-
spective multi-institutional trials failed to confirm the
predictive value of the most frequently used dyssyn-
chrony indices [10, 19]. Even in selected populations that
qualify for CRT therapy by current criteria, the predict-
ive value of a dyssynchrony index may be low [19, 20].
Several other factors make relevance of dyssynchrony in-
dices doubtful. Dyssynchrony detected by one index is
often not confirmed when a different index is used [21].
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Dyssynchrony indices are often positive in the setting
of narrow QRS complex [21], where CRT treatment
is shown to be ineffective [22, 23]. Velocity-based in-
dices are influenced by myocardial translational mo-
tion that is often present in the setting of severe LV
dilatation [24]. Finally, the limit of any dyssynchrony
index may in the end be the fact that in some pa-
tients, myocardium has simply “burnt-out,” hence los-
ing therapeutic and contractile reserve [25]. Similar
characteristics of strain-time and their improvement
were observed both in responder and non-responder
groups in this study and did not predict LV reverse
remodeling after CRT implantation. However baseline
average longitudinal strain might be a surrogate to
distinguish the non-responder group.

LV longitudinal strain as predictors of reverse remodeling
The MADIT-CRT cohort also supported that de-
creased average longitudinal strain predicts less bene-
ficial effects of CRT, especially in the setting of LBBB
[26, 27]. Several studies reported baseline global

longitudinal strain predicts LV reverse remodeling
after CRT in patients with both ischemic and non-
ischemic cardiomyopathy [26, 28]. Our result con-
firmed these reports by demonstrating it in CRT non-
responders with the non-ischemic population, though
a small sample size. A recent study showed depressed
longitudinal strain was strongly associated with total
scar burden assessed by cardiovascular magnetic res-
onance imaging in ischemic heart failure patients, and
it may be a sensitive parameter of LV contractile re-
serve and the presence of viable myocardium [28-30].
Another report showed longitudinal strain improve-
ment after CRT implantation also indicated better
clinical outcome and reverse remodeling, suggesting
contractile reserve is associated with reverse remodel-
ing [31]. Since responders showed significant im-
provement of longitudinal strain in the present study,
our findings suggest that underlying myocardial de-
formation could be the determinant of reverse remod-
eling after CRT implantation in patients with non-
ischemic cardiomyopathy and LBBB.
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Fig 6 Comparison of opposing wall mechanics during ventricular contraction before and after cardiac resynchronization therapy (CRT). Strain
values are measured at mid-systole (50 %), end-systole (100 %) and post-systole (125 %) before (upper panels) and >3 months after the start of
CRT (lower panels). a Septal and lateral longitudinal wall strains; b Anteroseptal and posterior longitudinal wall strains; and ¢ Inferior and anterior
longitudinal wall strains. Error bars represent standard errors. CRT, cardiac resynchronization therapy

Study limitations

This is a small, retrospective, observational study.
Only longitudinal strains were assessed, although vari-
ous previous studies have used circumferential or ra-
dial strains [5, 16]. However, longitudinal strains have
lower measurement error, and the ability of obtaining
anatomically accurate views is often easier from the
apical rather than from the parasternal position. In
addition, as we used very strict selection criteria, the
number of patients was relatively small, and we
lacked statistical power to perform multivariate ana-
lysis to predict CRT response. Therefore response to
CRT might be affected by other factors besides LV
strain. Additionally, our result seems inefficient in pa-
tients with ischemic cardiomyopathy, who often do
not show reverse remodeling after CRT. Further large
prospective study is required to verify the predictive
value of longitudinal strain in assessing LV reverse
remodeling.

Conclusions

Our study defines the characteristic segmental pattern of
LV contraction in patients with non-ischemic cardiomy-
opathy and LBBB before and after CRT. CRT non-
responders with non-ischemic cardiomyopathy and
LBBB demonstrated a qualitatively similar segmental
contraction pattern but have dramatically decreased lon-
gitudinal strain. These findings may help in predicting
the outcome of CRT in these patients.
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