Skip to main content

Pre-implant right ventricular function might be an important predictor of the response to cardiac resynchronization therapy



Cardiac resynchronization therapy is proven efficacious in patients with heart failure (HF). Presence of biventricular HF is associated with a worse prognosis than having only left ventricular (LV) HF and pacing might deteriorate heart function. The aim of the study was to assess a possible significance of right ventricular (RV) pre-implant systolic function to predict response to CRT.


We studied 22 HF-patients aged 72 ± 11 years, QRS-duration 155 ± 20 ms and with an LV ejection fraction (EF) of 26 ± 6% before and four weeks after receiving a CRT-device.


There were no changes in LV diameters or end systolic volume (ESV) during the study. However, end diastolic volume (EDV) decreased from 226 ± 71 to 211 ± 64 ml (p = 0.02) and systolic maximal velocities (SMV) increased from 2.2 ± 0.4 to 2.6 ± 0.9 cm/s (p = 0.04). Pre-implant RV-SMV (6.2 ± 2.6 cm/s) predicted postoperative increase in LV contractility, p = 0.032.


Pre-implant decreased RV systolic function might be an important way to predict a poor response to CRT implicating that other treatments should be considered. Furthermore we found that 3D- echocardiography and Tissue Doppler Imaging were feasible to detect short-term changes in LV function.

Peer Review reports


Chronic heart failure (CHF) is a frequent cause of in-hospital health care with a high cost. These patients have a poor quality of life (QoL) and a high readmission rate despite drugs such as RAAS- and beta-blockers, diuretics and aldosterone-antagonists which all have positive prognostic effects [15].

Cardiac Resynchronization Therapy (CRT) is established as an effective therapy to reduce mortality and morbidity in patients with systolic heart failure (HF) and prolonged QRS in functional class (NYHA) III-IV despite optimal medical treatment [610].

Dyssynchrony was pointed out as a baseline predictor of a beneficial effect of CRT in an analysis of the PROSPECT trial [11, 12]. The analysis also pointed out other important baseline predictors of a beneficial response to CRT such as female gender, non-ischemic ethiology, NYHA-class III, QRS-duration and no history of ventricular tachycardia. NYHA-class IV was not associated with CRT response and one reason might be that right ventricular (RV) apical pacing sometimes deteriorates LV function [13, 14] and many NYHA-class IV HF patients have RV dysfunction. The pathophysiologic explanations are not known for sure but could, at least partly, be that an already injured RV cannot manage the increased preload caused by better LV function in some patients. In the MADIT II trial it was found that patients receiving RV pacing had an increased prevalence of worsened heart failure than those with less RV pacing (15).


We assessed whether pre-implant systolic RV function could predict short-term response to CRT and if 3D- and TDI-echocardiography could be used to detect early changes in LV dimensions and function.

Materials and methods

Study Population

We enrolled 22 consecutive HF patients fulfilling standard criteria for CRT. All patients had a reduced systolic left ventricular (LV) function with an ejection fraction (EF) below 35%, QRS - duration > 120 ms and NYHA class III-IV despite optimal medical treatment (table 1).

Table 1 Baseline characteristics (n = 22)

Exclusion criterion was atrial fibrillation.

All patients gave informed consent. The study adhered to the Helsinki declaration and was approved by the Regional Ethical Review Board.

Echocardiography and Tissue Doppler Imaging

The patients were examined in the left lateral position and Tissue Doppler Imaging (TDI) echocardiography was acquired in three apical views using the Vivid 7 or 5 (the later for 3-D echocardiography only) systems (Vingmed, Hortem, Norway), with a 2.5 MHz probe. Three consecutive beats were registered and mean values were used for further analysis. Analyses were made off-line (Echo-Pac software, Hortem, Norway). The 16 segments LV-model of the American Society of Echocardiography was used for orientation [16]. Base and mid LV-segments, a total of 12, were used together with base and mid RV-segments in the 4-chamber view. The LV end diastolic dimension (LVEDd) was measured in the parasternal long axis (PLAX) view from 2D registrations. The LV end systolic diameter (LVESd) was measured in the same view with the smallest achievable LV size. Regional systolic contractility was assessed as systolic maximal velocity (SMV) during the ejection phase in the same segments. Tissue tracking (TT) was used to measure the longitudinal function in each segment. A mean value for 12 LV segments was calculated to achieve a measurement of global contractility.

Trans thoracic 3D Echo was performed using a 2.5 MHz transducer mounted in a handheld rotation device. The cardiac images were recorded from the apex during end-expiratory apnoea within one breath hold, whereby the need for respiratory triggering was abolished as previously described [17]. End diastolic volume (EDV) and End systolic volume (ESV) were measured and ejection fraction (EF) was calculated by the formula EDV-ESV/EDV × 100. All examinations were performed before and four weeks after receiving the CRT-device and stored for later off-line analysis. Volumes measured by 3D echo are almost as sensitive as measured by Magnetic Resonance Imaging. Thus, we used a combination of echo methods since we believe that they are enough sensitive to detect changes during short-term follow-up.

Biventricular Pacemaker Implantation

All patients received a CRT device (Insync III ®, Medtronic) implanted transvenously as described previously [17].

Statistical analyses

Continuous variables with a normal distribution were analyzed by paired Students t-test and given as mean ± SD. Other variables were analyzed by nonparametric tests and data are given as medians and range. All analyses were performed by Statistica® version 9.1 software (StatSoft, Inc., Tulsa, USA). Multivariable regression was performed by the best subset technique of Statistica. The ability of the right ventricular function variables to explain change in left ventricular function was the main analysis. The robustness of the variables to predict this change was also tested by using variable importance (VIP) in a Projection to Latent Structures (PLS)-regression analysis. We regarded p < 0·05 (two-sided) as significant.


Baseline characteristics of the patients are presented in table 1. Clinical and conventional, 3D and TDI echocardiographic changes from before to four weeks after CRT implantation are shown in table 2.

Table 2 Clinical and Echocardiographic (conventional, 3D and TDI) changes from pre-implantation to four weeks after CRT implantation

There were no changes in LV diameters or ESV. However, EDV decreased from 226 ± 71 to 211 ± 64 ml (p = 0.02) and SMV increased from 2.2 ± 0.4 to 2.6 ± 0.9 cm/s (p = 0.04). The increase in LV-SMV could by 41% (adjusted R2 in best subset multiple regression) be explained by pre-implant RV-SMV and RV-TT. These two variables were also shown to be the most important predictor variables in a PLS regression. Inclusion of pre-implant LV-SM and LV-TT in the multivariable regression did not improve the explanation of the change in LV-SM (Table 3). The significance of RV-SM persisted but RV-TT was no longer significant.

Table 3 Results of multivariable regression of the influence of pre-implant RV-SM, RV-TT, LV-SM and LV-TT on change in LV-SM four weeks after CRT implantation


We found that pre-implant RV systolic function as assessed by TDI could predict short-term response to CRT. The results are plausible from a mechanistic point of view but should of course be reproduced in a larger cohort of patients and with a longer follow-up.

The clinical implication of a role of pre-implant systolic RV function in the response to CRT should of course be that other treatments than CRT should be considered in patients with severe RV HF.

Our findings are supported by others using other methods and longer follow-up to study the importance of pre-implant RV systolic function [18, 19]. Scuteri et al used an extensive echo-Doppler examination and found that preimplant M-mode (TAPSE), RV systolic pressure measured by Doppler, RV dimensions and RV area change to be related with post-implant LV ESV remodelling [18]. They also found these relations to be consistent independent of aetiology and degree of dyssynchrony indicating the important roll of the pre-implant RV function. They suggest TAPSE < 14 mm, a simple and highly reproducible method, as cut-off value to define advanced RV dysfunction and found this cut-off to be associated with a twofold risk of the combined end point of death and emergency heart transplantation. In another study by Tabereaux et al a visual grading by 2D echocardiography of the RV function was used [19]. RV EF < 40% was the definition of RV systolic dysfunction and found to be associated to less response to CRT during 6 month's follow-up. Thus, the importance of preserved pre-implant systolic RV function has been demonstrated by different methods in HF patients with standard indication for CRT.

A suggested echocardiographic cut-off value of response to CRT is an decrease by approximately 10% in the end diastolic and end systolic volume [20, 21]. However, this is after 12 weeks CRT and there are no certain parameters to be measured to define a response already after four weeks of CRT. Thus, in this study we chose a combination of clinical parameters such as patient-assessed functional class and quality of life and echocardiographic parameters such as LV diameters (conventional echo), LV volumes (3D echo) and myocardial velocities and longitudinal movement (TDI) to decide whether there where a response after four weeks of CRT or not. According to this approach 68% of the patients responded to CRT in this study, which main aim however was to assess the importance of the pre-implant systolic RV function. 3D echo has been reported almost as sensitive as magnetic resonance imaging when measuring LV volumes and Müller-Brunotte at al reported TDI to be more sensitive than conventional echo measuring effects after treatment of hypertension induced LV hypertrophy [22]. It seems obvious that echocardiography should be used more when planning or doing follow-up in CRT since a lot of important information is given. However, the technique requires time and special interest and if it has to be done in all patients it might result in underuse of the CRT, a very effective treatment which probably is underused already today.

One explanation to the suggested importance of pre-implant systolic RV function might be a preload increase caused either by an acute deterioration in RV systolic function or by a miss match improvement where the LV function improves more than the RV function resulting in non-responding to CRT.

Furthermore, in the revised ESC guidelines on device therapy in HF it is pointed out that conventional pacing might increase symptoms and deteriorate LV function and therefore biventricular pacing is recommended regardless of QRS prolongation in patients with LV dysfunction and signs of HF [23].

In conclusion our findings implicate that pre-implant RV systolic function might be an important predictor of the poor response to CRT in some patients with biventricular heart failure and other treatments should be considered in these patients. Furthermore 3D- echocardiography and TDI seem feasible to detect changes in LV function during short-term follow-up.


No conflicts of interest.


  1. Mostered A, Hoes AW, de Bruyne MC, Deckers JW, Linkerr DT, Hofman A, et al.: Prevalence of heart failure and left ventricular dysfunction in the general population. The Rotterdam study. Eur Heart J. 1999, 20: 447-55. 10.1053/euhj.1998.1239

    Article  Google Scholar 

  2. Mejhert M, Persson H, Edner M, Kahan T: Epidemiology of heart failure in Sweden - a national survey. Eur J Heart Fail. 2001, 3: 97-103. 10.1016/S1388-9842(00)00115-X

    Article  CAS  PubMed  Google Scholar 

  3. Stewart S, MacIntyre K, MacLeod MMC, Bailey AEM, Capewelm S, MacMurray JJV: Trends in hospitalisation for heart failure in Scotland, 1990-1996. Eur Heart J. 2001, 22: 209-17. 10.1053/euhj.2000.2291

    Article  CAS  PubMed  Google Scholar 

  4. Cleland JGF, Gemmell I, Khand A, Boddy A: Is the prognosis of heart failure improving?. Eur J Heart Fail. 1999, 1: 229-41. 10.1016/S1388-9842(99)00032-X

    Article  CAS  PubMed  Google Scholar 

  5. The Task Force, 2008 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008. Eur Heart J. 2008, 29: 2388-2442.

    Article  Google Scholar 

  6. Penika M, Bartunek J, De Bruyne B, Vanderheyden M, Goethals M, De Zutter M, et al.: Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography. Circ. 2004, 109: 978-83. 10.1161/01.CIR.0000116765.43251.D7.

    Article  Google Scholar 

  7. St John Sutton MG, Plappert T, Abraham WT, Smith AL, DeLurgio DB, Leon AR, et al.: Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circ. 2003, 107: 1985-90. 10.1161/01.CIR.0000065226.24159.E9.

    Article  Google Scholar 

  8. Abraham WT, Fisher WG, Smith AL, : Multicenter insync randomized clinical evaluation. Cardiac resynchronization in chronic heart failure. N Engl J Med. 2002, 346: 1845-53. 10.1056/NEJMoa013168

    Article  PubMed  Google Scholar 

  9. Bristow MR, Saxon LA, Boehmer J, Krueger S, Kass DA, De Marco T, et al.: Cardiac resynchronization therapy with and without an implantable defibrillator in advanced chronic heart failure. N Engl J Med. 2004, 350: 2140-50. 10.1056/NEJMoa032423

    Article  CAS  PubMed  Google Scholar 

  10. Cleland JGF, Daubert JC, Erdman E, Freemantle N, Gras D, Kappenberger L, et al.: The effect of cardiac resynchronization on morbidity and mortality in heart failure. New Eng J Med. 2005, 352: 1539-49. 10.1056/NEJMoa050496

    Article  CAS  PubMed  Google Scholar 

  11. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorscan J, St John SM, De Sutter J, Murillio J: Results of the predictors of response to CRT (PROSPECT) trial. Circ. 2008, 117: 2608-16. 10.1161/CIRCULATIONAHA.107.743120.

    Article  Google Scholar 

  12. van Bommel RJ, Bax JJ, Abraham WT, Chung ES, Pires LA, Tavazzi L, Zimetbaum PJ, Gerritse B, Kristiansen N, Ghio S: Characteristics of heart failure patients associated with good and poor response to cardiac resynchronization therapy: a PROSPECT (predictors of response to CRT) sub-analysis. Euro Heart J. 2009, 30: 2470-77. 10.1093/eurheartj/ehp368.

    Article  Google Scholar 

  13. Tse H-F, Lau C-P: Long-term effect of right ventricular pacing on myocardial perfusion and function. J Am Coll Cardiol. 1997, 29: 744-9. 10.1016/S0735-1097(96)00586-4

    Article  CAS  PubMed  Google Scholar 

  14. Tse H-F, Yu C, Wong K-K, Tsang V, Leung Y-L, Ho W-Y, Lau C-P: Functional abnormalities in patients with permanent right ventricular pacing. J Am Coll Cardiol. 2002, 40: 1451-8. 10.1016/S0735-1097(02)02169-1

    Article  PubMed  Google Scholar 

  15. Steinberg JS, Fischer A, Wang P, Schuger C, Daubert J, Mcnitt S, Andrews M, Brown M, Hall JW, Zareba W, Moss A: The clinical implications of cumulative right ventricular pacing in the multicenter automatic defibrillator trial II. J Cardiovasc Electrophysiol. 2005, 16: 359-65. 10.1046/j.1540-8167.2005.50038.x

    Article  PubMed  Google Scholar 

  16. American Society of Echocardiography Committee on standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms, Schiller NB, Shah PM, DeMaria A, Devereux R, Feigenbaum H, et al.: Recommendations for quantitation of the left ventricle by two-Dimensional Echocardiography. J Am Soc Echocardiogr. 1989, 2: 358-67.

    Article  Google Scholar 

  17. Edner M, Ring M, Sarev T: Sequential biventricular pacing improves regional contractility, longitudinal function and dyssynchrony in patients with heart failure and prolonged QRS. Cardiovascular Ultrasound. 2010, 8: 12- 10.1186/1476-7120-8-12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scuteri L, Rordorf R, Marsan NA, Landolina M, Magrini G, Klersy C, Frattini F, Petracci B, Vicentini A, Campana C, Tavazzi L, Ghio S: Relevance of echocardiographic evaluation of right ventricular function in patients undergoing cardiac resynchronization therapy. PACE. 2009, 32: 1040-9.

    Article  PubMed  Google Scholar 

  19. Tabereaux PB, Doppalapudi H, Kay GN, Mcelderry T, Plumb VJ, Epstein AE: Limited response to cardiac resynchronization therapy in patients with concomitant right ventricular dysfunction. J Cardiovasc Electrophysiol. 2009, 19: 1-5.

    Google Scholar 

  20. Yu CM, Chau E, Sanderson JE, et al.: Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation. 2002, 105: 438-45. 10.1161/hc0402.102623

    Article  PubMed  Google Scholar 

  21. Saxon LA, De marco T, Shafer J, et al.: Effects of long-term biventricular stimulation for resynchronization on echocardiographic measures of remodeling. Circulation. 2002, 105: 1304-10. 10.1161/hc1102.105730

    Article  PubMed  Google Scholar 

  22. Muller-Brunotte R, Kahan T, Malmqvist K, Edner M: Tissue Doppler Imaging shows early improvement in diastolic function by irbesartan and atenolol in patients with hypertensive left ventricular hypertrophy. Am J Hypertension. 2006, 16: 927-36.

    Article  Google Scholar 

  23. The Task Force 2010 Focused update of ESC guidelines on device therapy in heart failure. Euro Heart J. 2010, 31: 2677-87.

    Article  Google Scholar 

Download references


We thank Jenny Rasck for skilful technical assistance.


This study was supported with grants from the Karolinska Institutet and Medtronic.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Magnus Edner.

Additional information

Authors' contributions

ME was responsible for planning and writing. MR and PH performed echocardiographic and statistical analyses and helped writing manuscript. All authors read and approved the final manuscript.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Edner, M., Ring, M. & Henriksson, P. Pre-implant right ventricular function might be an important predictor of the response to cardiac resynchronization therapy. Cardiovasc Ultrasound 9, 28 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: