Aaslid R, Markwalder TM, Nornes H: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982, 57: 769-774.
Article
CAS
PubMed
Google Scholar
Van der Linden J, Priddy R, Ekroth R, Lincoln C, Pugsley W, Scallan M, Tydén H: Cerebral perfusion and metabolism during profound hypothermia in children. J Thorac Cardiovasc Surg. 1991, 102: 103-14.
CAS
PubMed
Google Scholar
Huber P, Handa J: Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries: angiographic determination in man. Invest Radiol. 1967, 2: 17-32. 10.1097/00004424-196701000-00016
Article
CAS
PubMed
Google Scholar
Lindegaard K-F, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H: Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987, 18: 1025-30.
Article
CAS
PubMed
Google Scholar
Weyland A, Stephan H, Kazmaier S, Weyland W, Schorn B, Grune F, Sonntag H: Flow Velocity Measurements as an Index of Cerebral Blood Flow. Anesthesiology. 1994, 81: 1401-10. 10.1097/00000542-199412000-00015
Article
CAS
PubMed
Google Scholar
Bishop CCR, Powell S, Rutt D, Browse NL: Transcranial Doppler measurement of middle cerebral artery flow velocity: a validation study. Stroke. 1986, 17: 913-5.
Article
CAS
PubMed
Google Scholar
Rosemberg A, Narayan V, Jones D: Comparison of anterior cerebral artery blood flow velocity and cerebral blood flow during hypoxia. Pediatric Research. 1985, 19: 67-70.
Article
Google Scholar
Trivedi U, Patel RL, Turtle MR, Venn GE, Chambers DJ: Relative changes in cerebral blood flow during cardiac operations using xenon-133 clearance versus ttranscranial doppler sonography. Ann Thorac Surg. 1997, 63: 167-74. 10.1016/S0003-4975(96)01017-X
Article
CAS
PubMed
Google Scholar
Norwood WI, Norwood CR, Ingwall JS, Castaneda AR, Fosset ET: Hypothermic circulatory arrest: 31-phosphorus nuclear magnetic resonance of isolated perfused neonatal rat brain. J Thorac Cardiovasc Surg. 1979, 78: 823-30.
CAS
PubMed
Google Scholar
Greeley WJ, Kern FH, Ungerleider RM, Boyd J, Quill T, Smith Rf, Baldwin B, Reves J: The effect of hypothermic cardiopulmonary bypass and total circulatory arrest on cerebral metabolism in neonates, infants and children. J Thorac Cardiovasc Surg. 1991, 101: 783-94.
CAS
PubMed
Google Scholar
Fox LS, Blackstone EH, Kirkling JW, Bishop SP, Bergdahl LA, Bradley EL: Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. An experimental study. J Thorac Cardiovasc Surg. 1984, 87: 658-64.
CAS
PubMed
Google Scholar
Rebeyka IM, Coles JG, Wilson GJ, Watanabe T, Taylor MJ, Adler SF, Mickle DA, Romaschin AD, Ujc H, Burrows F: The effect of low-flow cardiopulmonary bypass on cerebral function: an experimental study and clinical study. Ann Thorac Surg. 1987, 43: 391-6.
Article
CAS
PubMed
Google Scholar
Taylor R, Burrows F, Bissonnette B: Cerebral pressure-flow velocity relationship during hypothermic cardiopulmonary bypass in neonates and infants. Anesth Analg. 1992, 74: 636-42. 10.1213/00000539-199205000-00003
Article
CAS
PubMed
Google Scholar
Jonassen A, Quaegebeur J, Young W: Cerebral blood flow velocity in pediatric patients is reduced after cardiopulmonary bypass with profound hypothermia. J Thorac Cardiovasc Surg. 1995, 110: 934-43. 10.1016/S0022-5223(05)80160-6
Article
CAS
PubMed
Google Scholar
Greeley W, Ungerlider R, Kern F, Brusino G, Smith R, Reves J: Effect of cardiopulmonary bypass on cerebral blood flow in neonates, infants and children. Circulation. 1989, 80 (suppl I): 209-215.
Google Scholar
Astudillo R, van den Linden J, Ekroth R, Wesslén O, Hallhagen S, Scallan M, Shore D, Lincoln C: Absent diastolic cerebral blood flow velocity after circulatory arrest but not after low flow in infants. Ann Thorac Surg. 1993, 56: 515-9.
Article
CAS
PubMed
Google Scholar
Rodriguez R, Austin E, Audenaert S: Postbypass effects of delayed rewarming on cerebral blood flow velocities in infants after total circulatory arrest. J Thorac Cardiovasc Surg. 1995, 110: 1686-91. 10.1016/S0022-5223(95)70032-3
Article
CAS
PubMed
Google Scholar
Zimmerman A, Burrows F, Jonas R, Hickey P: The limits of detectable cerebral perfusion by transcranial doppler sonography in neonates undergoing deep hypothermic low-flow cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1997, 114: 594-600. 10.1016/S0022-5223(97)70049-7
Article
CAS
PubMed
Google Scholar
Pigula F, Nemoto E, Griffith B, Siewers R: Regional low-flow perfusion provides cerebral circulatory support during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg. 2000, 119: 331-9. 10.1016/S0022-5223(00)70189-9
Article
CAS
PubMed
Google Scholar
Andropoulos D, Stayer S, Mckenzie D, Fraser C: Novel cerebral physiologic monitoring to guide low-flow cerebral perfusion during neonatal aortic arch reconstruction. J Thorac Cardiovasc Surg. 2002, 125: 491-9. 10.1067/mtc.2003.159. 10.1067/mtc.2003.159
Article
Google Scholar
Kety SS, Schmidt CF: The effect of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest. 1946, 25: 107-19.
Article
PubMed Central
Google Scholar
Patel RL, Turtle MRJ, Chambers DJ, Venn GE: Hyperperfusion and cerebral dysfunction. Effect of differing acid-base management during cardiopulmonary bypass. Eur J Cardiothorac Surg. 1993, 7: 457-63. 10.1016/1010-7940(93)90274-F
Article
CAS
PubMed
Google Scholar
Gruber E, Jonas R, Newburger J, Zurakowski D, Hansen D, Laussen P: The effect of hematocrit on cerebral blood flow velocity in neonates and infants undergoing deep hypothermic cardiopulmonary bypass. Anesth Analg. 1999, 89: 322-7. 10.1097/00000539-199908000-00014
CAS
PubMed
Google Scholar
Rodriguez R, Cornel G, Splinter W, Weerasena N, Reid C: Cerebral vascular effects of aortovenous cannulation for pediatric cardiopulmonary bypass. Ann Thorac Surg. 2000, 69: 1229-35. 10.1016/S0003-4975(99)01444-7
Article
CAS
PubMed
Google Scholar
Austin E, Edmonds HJ, Auden S, Seremet V, Niznik G, Sehic A, Sowell M, Cheppo C, Corlett K: Benefit of neurophysiologic monitoring for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 1997, 114: 707-17. 10.1016/S0022-5223(97)70074-6
Article
PubMed
Google Scholar
Andropoulos D, Stayer S, Diaz L, Ramamoorthy C: Neurological monitoring for congenital heart disease. Anesth Analg. 2004, 99: 1365-75. 10.1213/01.ANE.0000134808.52676.4D
Article
PubMed
Google Scholar
O'Brien J, Butterworth J, Hammon J, Morris K, Phipps J, Stump D: Cerebral emboli during cardiac surgery in children. Anesthesiology. 1997, 87: 1063-9. 10.1097/00000542-199711000-00009
Article
PubMed
Google Scholar
Fallon P, Aparicio JM, Elliot MJ, Kirkham FJ: Incidence of neurological complications of surgery for congenital heart disease. Arch Dis Child. 1995, 72: 418-22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ferry PC: Neurologic sequelae of cardiac surgery in children. Am J Dis Child. 1987, 141: 309-12.
CAS
PubMed
Google Scholar
Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW: Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002, 73: 1752-8. 10.1016/S0003-4975(02)03534-8
Article
PubMed
Google Scholar
Truemper EJ, Fisher AZ: Cerebrovascular developmental anatomy and physiology in the infant and child. Transcranial Doppler ultrasonography. Edited by: Babikian VL, Wechsler LR. St. Louis: Mosby, 1993, 355-75.
Google Scholar